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This article presents a comprehensive survey of both 

attack and defense mechanisms within the federated 

learning (FL) landscape. Furthermore, it explores the 

challenges involved and outlines future directions for the 

development of a robust and efficient FL solution. 

W ith advances in hardware computing 
power, artificial intelligence (AI) has 
gained widespread adoption, enhancing 
productivity and automating repetitive 

tasks. However, even though AI can be adopted in almost 
every field, it is difficult to apply this technology to all 
industries because of data sensitivity, privacy issues, or 
limited computational resources. Federated learning (FL) 
offers a solution for training models without the need to 

store all data on a centralized server. FL clients participate 
in the training process using their local data, without shar-
ing it with other clients or the server. Therefore, each cli-
ent can both contribute to and benefit from a global model.

While FL has made strides in data privacy, vulnerabil-
ities remain in both model security and client data pri-
vacy. In terms of security risks, attackers may attempt 
to compromise the global model by introducing special-
ized patterns into the dataset, altering the class labels of 
targeted data, or modifying updates to already-trained 
models. Additionally, malicious clients may benefit 
from global models without contributing their data or 
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computing resources. For the privacy 
risks, the malicious server or clients 
launch attacks to examine whether a 
selected data point is used, identify the 
data labels, or reconstruct the data that 
the honest client used during the train-
ing stage.

To safeguard model utility and 
client privacy, over the past, various 
techniques have been proposed. Secu-
rity-enhancing mechanisms aim to 
detect or mitigate abnormal updates. 
In terms of privacy-preserving mecha-
nisms, secure multiparty computation 
(MPC) allows clients to fragment and 
interchange local updates, making it 
difficult for attackers to identify the 
origin of any update. Differential pri-
vacy (DP) enables clients to introduce 
calibrated noise into local updates, 
preventing the actual values to be dis-
tinguished. Homomorphic encryption 
(HE) lets clients encrypt local updates, 
enabling the server to generate an 
aggregated model without accessing 
the raw data. Hybrid approaches also 
exist, combining multiple techniques 
to offer a more robust defense against 
potential adversaries.

The main contribution of this 
study can be summarized as fol-
lows: 1) We classify attacks based on 
whether they target the security or 
privacy aspects of clients’ data or the 
model itself. This categorization pro-
vides a structured understanding 
of the threat landscape in FL. 2) To 
understand the diverse attack vec-
tors in FL, we provide a detailed tax-
onomy of each attack and defense 
mechanism. 3) To have a clear over-
view of the current advancements 
and strategies employed to mitigate 
FL vulnerabilities, we summarize 
existing state-of-the-art research in 
each domain by providing a compar-
ative table of time complexity among 

different privacy-preserving mecha-
nisms. 4) Finally, the study also out-
lines potential research directions 
and challenges pertaining to the 
integrity of FL.

In the forthcoming sections, we 
commence by introducing the FL sys-
tem along with its corresponding threat 
models. We proceed to investigate a 
spectrum of attacks that encompass 
model security and client privacy, fol-
lowed by a comprehensive exam-
ination of existing defense strategies. 
Finally, we culminate with a conclusion 
that encapsulates our findings and 
offers prospective avenues for advancing 
security and privacy within the realm 
of FL.

BACKGROUND

Federated Learning
Similar to decentralized machine 
learning, FL allows the data to be 
stored locally on individual client. 
These clients join the training process 
and use their own local data to con-
struct the final model cooperatively. 
Therefore, the privacy of local data are 
preserved because the clients’ data are 
not shared to others. Figure 1 depicts 
stages of training process in FL. 

1. The central server selects a sub-
set of clients to join the training 
round. 

2. The central server sends a 
model to the clients, and the 
clients train local models with 
their own local data. 

3. Clients send local updates (the 
model parameters or gradients) 
to the server. 

4. The server aggregates a global 
model based on received 
updates and sends the global 
model to clients.

According to clients’ data distribu-
tion, FL can be classified into horizon-
tal FL and vertical FL. In horizontal FL, 
or sample-based FL, clients’ data share 
similar features but different samples. In 
vertical FL, or feature-based FL, clients’ 
data differ in features, but the samples 
might be the same. The FL scheme dis-
cussed in this article is horizontal FL.

Threat models
Despite data being distributed and 
stored client-side, v ulnerabilities  
remain for attacks against both the 
trained models and client data. In gen-
eral, the adversaries can be catego-
rized into the following types: 

1. Semi-honest server: A semi-
honest server, also called 
honest-but-curious, follows FL 
protocols but aims to extract 
client data from received 
updates or the global model. 

2. Malicious server: A malicious 
server doesn’t follow the 
protocols in FL and actively 
gleans private informa-
tion through modifying the 
received data. 

3. Malicious clients/colluding cli-
ents: Similar to the malicious 
server, malicious clients don’t 
obey the protocols and attempt 
to obtain honest clients’ infor-
mation. Colluding clients 
work together to amplify their 
attacks and may even team up 
with a malicious server.

In addition to adversaries, trusted 
third parties (TTPs) may be adopted 
for generating and distributing cryp-
tographic keys to clients and servers, 
thereby ensuring that the plaintext 
data are effectively converted into 
secure ciphertext.
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Attacks on FL can be categorized by 
objective: Attacks targeting the secu-
rity of the model aim to compromise 
its robustness through data or model 
poisoning. Attacks targeting the pri-
vacy of the model seek to obtain cli-
ents’ local training data.

Given that potential attackers 
could be the server, any client, or 
groups of colluding clients, it is neces-
sary to understand how these attacks 
are executed against the FL system 
and what defense mechanisms are 
available. The subsequent section will 
introduce the core concepts of these 
attacks and outline corresponding 
defense mechanisms as depicted 
in Figure 2.

THREATS AND ATTACKS
This section classifies threats into 
two categories: those that degrade 
model accuracy as attacks targeting 

security of the model and those aim-
ing to obtain client data as attacks tar-
geting privacy of the model.

Attacks targeting 
security of the model
There are types of attacks that try 
to reduce the accuracy of the global 
model, these attacks are introduced in 
the following subsections.

Data poisoning attack. A data poi-
soning attack is a type of attack when 
malicious clients corrupt local data 
to compromise the global model. 
Such attacks fall into two subcate-
gories: clean-label and dirty-label 
poisoning. The goal is to inf luence 
t he g loba l model to ma ke i ncor-
rect predictions.

In a clean-label poisoning attack, 
the attacker subtly modifies the data 
features without altering the labels. 

These altered features, combined with 
the correct labels, are used to train a 
flawed model that is prone to misclas-
sifying data with specific patterns. To 
evade detection, the attacker measures 
the similarity between their updates 
and those from benign clients and 
adds minimal perturbation to ensure 
the poisoned data closely resembles 
the target data. However, the attack is 
temporary. If the attackers stop send-
ing the model updates, the backdoor 
quickly disappears. It is because benign 
clients continue to upload their model 
updates, which contain gradients that 
counteract those of the attacker. Zhang 
et al.1 in their article explain the sparse-
ness introduced by stochastic gradient 
descent (SGD), the majority of the l2 
norm of the aggregated benign gradient 
only exists in a few coordinates. There-
fore, if the attacker only updates the 
coordinates in gradients that benign 
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FIGURE 1. Training procedure in FL. A central server initiates the process by distributing a global model to multiple decentralized client 
devices or servers. Each client uses its local data to perform model updates through several rounds of training, typically using techniques 
like SGD. These local updates, instead of raw data, are then shared back with the central server.
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clients rarely update, the backdoor can 
persist for a longer period.

Compared to clean-label poisoning 
attack, dirty-label poisoning attacks 
allow the attacker to alter the labels 
directly, causing the global model to 
misclassify the classes of the source 
data. For example, in a label-f lip-
ping attack, the attacker swaps labels 
between source and target samples.

Model poisoning attack. In model 
poisoning attacks, attackers manip-
ulate local model updates to impair 
the global model. For example, a 
malicious client might inject Gauss-
ian noise into their updates or mimic 
updates from benign clients to com-
promise the aggregated model’s accu-
racy. Instead of generating random 
noise for the model update, Cao et al. 

propose creating low-accuracy mod-
els using fake clients inserted into 
the FL system.2 Here, the attacker 
chooses a base model—identical 
in architecture to the global model 
but with low accuracy—as the start-
ing point. The aim is to degrade the 
global model’s performance like the 
suboptimal base model. During the 
attack, the direction of the model 
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FIGURE 2. A taxonomy of threats, defenses, and privacy-preserving techniques in FL.
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update is determined by the differ-
ences in model parameters between 
the global and base models, thereby 
increasing the impact by scaling up 
the fake updates.

Free-rider attack. Free-riders are 
malicious clients that send fake local 
updates to exploit the global model 
without contributing resources. These 
updates don’t degrade the model’s per-
formance, allowing free-riders to ben-
efit without any investment. There 
are various methods proposed for 
free-riders to generate fake updates: 
1) The free-rider randomly samples 
the update values from a uniform dis-
tribution, 2) the free-rider utilizes the 
difference of parameters between two 
global models sent from the server, 
or 3) the free-rider applies Gaussian 
noise with the parameters difference 
between two global models.

Attacks targeting privacy 
of the model
In addition to compromising the effec-
tiveness of the models, attackers can 
also gain access to sensitive client 
information, such as the data used 
for training. This section will explore 
the various methods attackers use to 
obtain such private information.

Model inversion attack. In a model 
inversion attack, or deep leakage from 
gradient, a malicious server tries to 
reconstruct client data. The server 
builds a secondary model that learns 
from extracted gradients in the aggre-
gated model. By using gradient descent 
to minimize the distance between 
dummy and target gradients, the 
server can approximate client train-
ing data. Existing methods use met-
rics like Euclidean distance or cosine 
similarity to measure the gradients’ 

magnitude and direction. However, 
the local updates can be compressed 
before transmission to alleviate com-
munication bottlenecks, which makes 
the DLG attack less effective because 
of the information loss during the 
compression. Therefore, Yang et al. 
introduce the highly compressed 
gradient leakage attack, designed to 
reconstruct both data and labels from 
compressed gradients.3 Initially, an 
“Init-Generation” step is utilized to 
create dummy data that compensates 
for the information loss due to com-
pression. A modified objective func-
tion is then used to train the dummy 
data under the gradient compres-
sion scenarios. Finally, a denoising 
model is used to achieve high-quality 
data reconstruction.

Inference attack. Inference attacks 
share similarities with model inver-
sion attacks and are also initiated by 
a malicious server. The goal here is 
to determine whether a specific data 
sample has been used by clients or to 
identify the class labels of client data.

 › Membership inference attack: In 
a membership inference attack, 
an attacker aims to identify if a 
specific data sample was used 
by clients. The attacker utilizes 
data with a distribution like that 
of the honest clients’ local data 
to make this determination. 
Moreover, the attacker can mon-
itor the global model, and then 
craft parameters to make the 
attack more effective. However, 
these attacks generally require 
large datasets to be effective. 
To generate more diverse data, 
generative adversarial network 
(GAN) is applied in conjunction 
with the attack model to predict 

membership information. The 
GAN is designed to generate 
data that mimics the distri-
bution of the original dataset. 
This synthesized data is then 
combined with the original 
data to train the attack model, 
thereby enhancing its capabil-
ity to determine membership 
information.

 › Category attack: In addition to 
the training data, attackers 
may also seek to uncover label 
information. Gao et al. propose a 
category inference attack using 
a multilabel inference model.4 
Given a target client’s model 
update, this inference model can 
then be trained to predict the 
corresponding category labels.

SECURITY ENHANCING 
AND PRIVACY-PRESERVING 
MECHANISMS
In the preceding section, we delin-
eated various attack methodologies 
that compromise the security and pri-
vacy of FL systems. This section is ded-
icated to outlining strategies designed 
to fortify the security and privacy of 
the FL systems.

Security-enhancing mechanisms
There are approaches that aim to 
strengthen the robustness of the 
trained models used in FL. These 
methodologies seek to mitigate the 
impact of a variety of attacks and 
enhance overall model security.

Defenses against data poisoning 
attack. Zhang et al. propose a trigger 
reverse mechanism5 to defend against 
backdoor attacks. In the warm-up 
phase, a distance matrix is generated 
to measure class distance between all 
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class pairs. Pairs with large distances 
are chosen to form the promising 
pairs. Next, if the client has enough 
local data for both labels of pair, it will 
perform symmetric hardening by pur-
posely inserting backdoor patterns to 
both datasets and flip the labels, insert 
the triggers on the classes, and update 
the distance matrix of the promising 
pairs. If the client has insufficient 
data, on the other hand, an asymmet-
ric hardening is used on the source 
label to target only, which the back-
door patterns are injected. Next, the 
distance matrix is updated. When 
the benign clients adopt hardening 
mechanisms to counter the malicious 
clients’ backdoor updates, the aggre-
gated model tends to generate low 
confidence when predicting backdoor 
data. Therefore, the data with low pre-
diction confidence can be filtered out 
during the inference stage.

Yin et al. propose a method using 
historical local updates to distinguish 
between benign and malicious clients.6 
The server stores this history and cal-
culates the gradient difference between 
each client’s updates and the historical 
average. Clients are then classified as 
benign or malicious based on this differ-
ence. The global model is subsequently 
aggregated using weighted contribu-
tions from both client groups.

Defenses against model poisoning 
attack. Like data poisoning attacks, 
model poisoning at tacks ma kes 
the malicious updates deviate from 
benign updates or the optimal update.

Panda et al. employes gradient 
sparsification to mitigate the attack, 
selecting gradients with the high-
est magnitude for aggregation.7 Cli-
ents train local updates which are 
then clipped based on their L2 norm. 
The server aggregates these updates 

through averaging and adds the result 
to an error feedback vector. The top-k 
magnitude coordinates are extracted 
from this vector and zeroed out. These 
top-k coordinates are then used to 
update the global model.

HE can be employed as a defense 
mechanism against model poisoning 
attacks. Ma et al. propose a privac y- 
preserving defense strategy through 
t w o - t r a p d o o r  H E ,  w h i c h  r e s i s t s 
en crypted model poisoning attacks with-
out violating privacy.8 Specifically, the 
encrypted local models are used to cal-
culate the secure cosine similarity. To 
prevent benign updates from being mis-
judged as malicious, a Byzantine-tol-
erance aggregation method based on 
confidence scores is used for aggrega-
tion, rather than discarding abnormal  
model updates.

Defenses against free-riders attack. 
Free-riders are the malicious clients 
who utilize the global model without 
contributing effective training locally. 
Chen et al. propose the weight evolv-
ing frequency matrix (WEF-Matrix), a 
system in which each client maintains 
a record of the frequency of weight 
changes.9 Both the WEF-Matrix and 
the local updates are sent to the server. 
Based on the differences observed 
in the WEF-Matrices, the server can 
distinguish between free-riders and 
benign clients. Ultimately, the server 
prevents free-riders from gaining 
access to high-quality models.

Privacy-preserving mechanisms
This section covers defense mech-
anisms focused on privacy. Cryp-
tographic methods such as secure 
MPC, DP, and HE mitigate threats 
like gradient leakage and inference 
attacks, protecting client data without 
compromising model utility.

Secure MPC. Secure MPC enables col-
laborative computation among mul-
tiple parties while keeping individual 
data private. In FL, this prevents both 
the server and clients from access-
ing sensitive data. As shown in Fig-
ure 3, each client splits its local model 
update into shares, generates noise, 
and distributes these among other 
clients. These perturbed shares are 
combined into new updates and sent 
to the central server for aggregation 
into a global model. Finally, each cli-
ent removes the noise to reconstruct 
the original model, preserving both 
data integrity and privacy.

However, as the number of clients 
increases, communication overhead 
also increases. One solution is sepa-
rating clients into different groups. 
Kanagavelu et al. consider commu-
nication latency to split clients into 
groups.10 Each group has a leader 
responsible for aggregating local 
updates and sending this group-level 
model to the server. The server then 
aggregates these into a global model, 
reducing overall communication load.

Bonawitz et al. present a secure aggre-
gation protocol using cryptographic 
methods to protect clients from both 
malicious servers and colluding cli-
ents.11 In this protocol, model informa-
tion is securely shared between clients 
and servers through cryptographic 
means. The protocol involves the fol-
lowing rounds: 

1. Advertise keys: Each client gen-
erates key pairs and shares the 
public keys with other clients 
through the server. 

2. Share keys: Each client gener-
ates its secret shares for mask-
ing, and the ciphertexts are 
broadcast to the other clients 
through the server. 
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3. Masked Input Collection: After 
local training, each client 
applies double-masking to hide 
the information of its local 
update with received masks 
and send the masked update to 
the server. 

4. Consistency Checks: Each  
client receives a list of surviv-
ing clients from the server, 
generates its signature, and 
sends the signature to the 
server. 

5. Unmasking: If there are suffi-
cient validate signatures, the 
server aggregates the shared 
secrets to generate the global 
model.

There are also concerns about effi-
ciency. The use of secure two-party 
computation, a subset of MPC, can 
reduce computational time.12 Another 

method to improve efficiency is rear-
ra ngi ng t he cl ients.13 Instead of 
connecting all clients together and 
communicating to all clients, they 
are arranged into groups as a tree 
structure, where each group performs 
intragroup secret sharing and aggre-
gation to generate aggregated models 
for groups. Next, intergroup commu-
nication is performed when a child 
group sends a secrete share to the par-
ent group. Lastly, the server receives 
a sufficient amount of aggregated 
results from groups and generates the 
final aggregated model.

Even with these protective mea-
sures, the server could potentially  
distribute a manipulated global model. 
To counteract this, a verification stage 
is proposed as a verifiable FL scheme. 
Clients encrypt local updates and 
generate proofs for verif ication. 
After aggregation, each client verifies 

the proofs to ensure the aggregated 
result is trustworthy. Nevertheless, 
the verification phase introduces 
computational overhead. The bot-
tleneck in the verifiable aggrega-
tion scheme occurs when the server 
recovers the hashes of dropout users 
one by one, which becomes worse if 
dropouts are frequent in a large FL 
system. Therefore, a one-shot aggre-
gate hash recovery based on linearly 
homomorphic hashes is proposed 
for the server to boost the time on 
recovering hash.14 In this approach, 
each client carefully encodes a mask 
which is used to protect the hash 
for verification. These masks allow 
the server to generate the aggregate 
hash for participating clients in one 
shot. Because of the linear homo-
morphism of the hashes, surviving 
clients can verify the integrity of the  
aggregated results.
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FIGURE 3. Training procedure of MPC in FL. In this collaborative paradigm, data are partitioned across multiple parties, each with its 
own local model. During each training iteration, parties compute gradients on their local data, preserving its privacy through encryption 
or secure sharing techniques. These encrypted gradients are then securely aggregated, creating a global model update.
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DP. DP seeks to maintain a balance 
between data protection and query 
accuracy by adding random noise 
to the data. In FL, DP is applied to 
local updates, obscuring individ-
ual data points to counter infer-
ence attacks. However, this added 

noise can compromise the global  
model’s accuracy.

A solution proposed by Cheng 
et  al. aims to counteract this tradeoff 
by sparsifying the local gradients.15 
Specifically, it introduces a regular-
ization term to the objective function, 

constraining the l2 norm of local 
updates. A subset of parameters is then 
set to zero, creating sparsified local 
updates. By doing so, the amount of 
DP noise required is reduced, thereby 
preserving both privacy and model 
accuracy. Instead of applying uniform 

TABLE 1. Comparison of communication and computation cost of privacy preserving in FL. 

Approach 
Require 
TTP? a Overall computation cost Overall communication cost 

Computation cost on server Computation cost per client Communication 
cost on server

Communication 
cost per client

Kanagavelu 
et al.10 

No Not applicable, no sufficient information Total number of message 
exchanged: O(K2 + C2)b 

Bonawitz 
et al.11 

No O(MN2) O(MN + N2) O(MN + N2) O(M + N)  

Fereidooni 
et al.12 

No O(MN) O(M) O(MN) O(M) 

Jahani-
Nezhad 
et al.13 

No − −
− −

⋅ ⋅ − −O N D
N T D

M N D1 log ( 1)2
T D

+
− − − −

− −O M N
N T D

N
N

N Dlog ( 1)2 + T
N T D

M
− −

1 + +T D
N T D

M
− −

1

Buyukates 
et al.14 c 

No O(N · log(N))
+ +O N N B

B
Mlog ( ) 1 O(N) O(N) 

Cheng 
et al.15 

No O(1) O(1) O(MN) O(M) 

Miao et al.16 No O(N + A) O(A · (L · log2(L) + L)) O(MN) O(M) 

Jiang  
et al.17 

No O(1) O(A + L · log(L)) O(MN) O(M) 

Ma et al.18 No O(1) O(N) O(N(N + M + S)) O(N + M + S) 

Truex  
et al.19 

No Not applicable, no sufficient information 2VP+VN+Nd 

Xu et al.20 Yes Not applicable, no sufficient information VN+V + Nd 

Here, N is the total number of clients, V is the total number of servers, P is the number of required clients for decryption (for hybrid methods), K is the number of clients in group 
(for CE-Fed), C is the elected committee members (for CE-Fed), M is the model size, D is the number of dropout users, T is the number of semihonest users, L is the size of layers 
in a model, A is the number of layers in a model, S is the size of secret share, and B is the batch size for verification.
a The TTP may be required to generate and advertise the keys to participants in the FL system. 
b The complexity is the total number of exchanged messages intra and inter groups for model aggregation in CE-FED where K, C  N. 
c The communication only considers the operations related to verification. 
dFor hybrid methods, the number of crypto-related operations is measured, and there are multiple servers for counting the number of operations.
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DP noise across all layers in the local 
update, the noise could also be added 
layer-wise. Miao et al. takes the weight 
range of different layers into consider-
ation.16 By calculating the offset from 
the range center of each weight and 
compressing the local updates, the 
total amount of DP noise is fewer than 
applying DP noise uniformly in the 
whole model.

HE. HE allows for computations 
on encrypted data, producing an 
encrypted result that mirrors calcu-
lations on the plaintext. In FL, HE 
enables the secure aggregation of 
encrypted local updates, thwarting 
attempts to extract information from 
the models.

While HE enhances client data 
privacy, it also incurs computational 
and efficiency costs. To mitigate this, 
local updates are batched together for 
encryption, reducing transmission 
time. However, batch encryption con-
flicts with sparsification techniques 
used to compress the model, because 
each local update has unique sparsi-
fied coordinates that the server can’t 
accurately match for updates. Hence, 
Jiang et al. individually sparsify and 
encrypt each local update.17 Trans-
mitting only the sparsified updates, 
rather than the entire model, substan-
tially decreases both encryption and 
decryption times.

Despite its security features, HE 
can be vulnerable to potential privacy 
leaks. If clients and servers share the 
same set of public and private keys, 
it provides collusion between mali-
cious servers and compromised cli-
ents, risking the exposure of data 
from honest clients. To mitigate the 
privacy issue, Ma et al. propose an 
xMK-CKKS- based method which 
exploits an aggregated public key, 

and each client has its own private 
key.18 The aggregated public key is 
used to encrypt the local updates, 
and each clients’ private keys are 
used for decryption. Since decryp-
tion involves multiple shares that 
contain individual secret keys and 
aggregated ciphertexts, the security 
of each ciphertext is fortified.

Hybrid methods. To bolster privacy 
in FL, multiple techniques can be 
integrated together. Truex et al. com-
bines MPC with DP using the thresh-
old variant of the Paillier cryptosys-
tem.19 Clients encrypt their local 
model updates, adding noise for DP. 
Because of the Paillier cryptosystem’s 
homomorphic properties, the server 
can aggregate these encrypted models 
without needing to decrypt the clients’ 
models. Selected clients then decrypt 
the aggregated model, which is sub-
sequently sent to all participating cli-
ents. The server then selects a set of cli-
ents to decrypt the aggregated model 
and send it to all clients.

Although MPC and DP offer pri-
vacy advantages, they come with 
drawbacks like high computational 
time and the necessity of know-
ing the client count for decryption. 
Instead of using HE to achieve MPC, 
Xu et al. adopts multi-input func-
tional encryption to encrypt the mod-
els from the clients.20 In addition, a 
third party authority generates the 
keys and performs decryption, which 
further reduces the communication 
between the server and clients while 
enhancing privacy.

We summarize and compare the 
computation and communication com-
plexity between existing approaches 
in Table 1 based on different types 
of privacy-enhancing technologies  
for FL.

Data privacy and security have 
become increasingly criti-
cal in the application of AI 

technologies. FL offers a promising 
approach that reconciles the capabili-
ties of machine learning models with 
the growing requirements for secu-
rity and data privacy. In this article, we 
provided a comprehensive taxonomy 
of potential vulnerabilities within FL 
landscape and described how mali-
cious participants may exploit these 
weaknesses. Moreover, we introduced 
the existing defense mechanisms 
designed to bolster security and pre-
serve the privacy of sensitive data. 
Given the growing importance of data 
privacy, Table 1 serves as a resource to 
guide FL enthusiasts, researchers, and 
participants in the industry in select-
ing the most appropriate mechanisms 
for enhancing data privacy within 
these systems.

Although there have been various 
approaches proposed to solve security 
and privacy issues in FL, this topic still 
contains challenges to be solved and 
improved. The followings summarize 
a few key observations:

1. Enhance both security and pri-
vacy: Most existing research 
tends to focus on either secu-
rity or privacy, rarely address-
ing both issues simultaneously. 
However, in real-world sce-
narios, these two challenges 
often coexist and interact in 
complex ways. Therefore, it is 
crucial to develop integrated 
mechanisms that address both 
security and privacy concerns 
concurrently.

2. Efficiency while applying pri-
vacy-preserving techniques: 
While privacy-preserving 
techniques like secure MPC, 
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secure aggregation, and HE 
are crucial for data protec-
tion, they often increase com-
putational and communica-
tion overhead. Therefore, it is 
necessary to develop efficient 
privacy-enhancing methods 
that mitigate additional com-
putational and communica-
tion burdens.

By addressing these key research 
directions, we can pave the way for 
more robust and privacy-aware FL sys-
tems that can meet the demands of 
next-generation real-world scenarios. 
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