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Abstract—Applications of machine learning (ML) models and
convolutional neural networks (CNNs) have been rapidly in-
creased. Although state-of-the-art CNNs provide high accuracy in
many applications, recent investigations show that such networks
are highly vulnerable to adversarial attacks. The black-box adver-
sarial attack is one type of attack that the attacker does not have
any knowledge about the model or the training dataset, but it has
some input data set and their labels. In this paper, we propose a
novel approach to generate a black-box attack in sparse domain
whereas the most important information of an image can be ob-
served. Our investigation shows that large sparse (LaS) components
play a critical role in the performance of image classifiers. Under
this presumption, to generate adversarial example, we transfer an
image into a sparse domain and put a threshold to choose onlykLaS
components. In contrast to the very recent works that randomly
perturb k low frequency (LoF) components, we perturb k LaS
components either randomly (query-based) or in the direction of
the most correlated sparse signal from a different class. We show
that LaS components contain some middle or higher frequency
components information which leads fooling image classifiers with
a fewer number of queries. We demonstrate the effectiveness of this
approach by fooling six state-of-the-art image classifiers, the Ten-
sorFlow Lite (TFLite) model of Google Cloud Vision platform, and
YOLOv5 model as an object detection algorithm. Mean squared
error (MSE) and peak signal to noise ratio (PSNR) are used as
quality metrics. We also present a theoretical proof to connect these
metrics to the level of perturbation in the sparse domain.

Index Terms—Convolutional neural network, black-box attack,
deep learning, sparse representation.

I. INTRODUCTION

BY THE ever-increasing demands for analyzing and pro-
cessing large datasets, ML algorithms and particularly

deep learning techniques have become the center of attention
of many companies and service providers. The remarkable
performance of CNNs for image segmentation, classification,
and object tracking could provide acceptable solutions for many
problems encountered in computer vision and biomedical engi-
neering. [1]–[3]. While almost CNNs perform well and provide
high accuracy, their robustness toward some malicious attacks
still are not acceptable [4]–[6]. Applying some perturbation on
the input data may totally undermine the high accuracy of a
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classifier since ML models are usually trained and deployed
in benign settings. In other words, they do not consider certain
scenarios in which an attacker can compromise the performance
of the system.

Recently, many works have been proposed to point out the
vulnerability of CNNs against adversarial scenarios [7]–[11].
By slightly perturbing the input data, ML classifier may fool and
predict a wrong label. If this perturbation is small enough to the
human eyes, then the perturbed image is called an adversarial
example [5], [12], [13]. This problem can be viewed from a
different perspective, if we add a limited perturbation to an
image, while human eyes may detect the perturbation, but still we
expect the classifiers classify correctly. It opens up a new horizon
of the robustness of ML models against adversarial examples.

An adversarial example can be obtained by solving the fol-
lowing minimization problem

min ||r||2 s.t. C(x+ r) �= C(x) (1)

where r is adversarial perturbation, ||.||2 is the Euclidean norm
or �2 norm, x is the legitimate image (original image), and
C(.) yields the classifier’s output label. Based on (1), there are
two factors in generating adversarial examples, first having a
minimum perturbation on the legitimate image, and the second,
fooling the classifier output.

Misclassification and targeted misclassification attacks are
two major goals of adversarial examples. In the misclassification
attack, an adversary tries to fool the ML classifier by mis-
classifying a legitimate example to different classes other than
the original one. For example, a legitimate image with a label
‘1’of the MNIST (Modified National Institute of Standards and
Technology) dataset is perturbed in such a way that ML classifier
yields an output label belongs to {0, 2, 3, 4, 5, 6, 7, 8, 9}, yet not
‘1’. In targeted misclassification, the attacker tries to fool the
classifier to yield a targeted label. For example, the same legiti-
mate image with a label ‘1’is labeled as a specific number like
‘8’by the classifier. In this study, we focus on misclassification
attacks.

Adversarial examples can be generated based on two different
approaches: white-box and black-box. In white-box attacks,
the attacker has comprehensive knowledge about the training
dataset, model’s parameters, number of CNN layers, loss func-
tion, and the whole structure of the model. There are numerous
works based on white-box attacks, such as fast gradient sign
method (FGSM) [14], beyond the image space approach that
uses physical space features of 3D images, [15], deepfool [16],
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Jacobean-based Saliency Map Attack (JSMA) [4]. For example,
FGSM generates an adversarial perturbation for a given legiti-
mate image by computing the gradient of the cost function with
respect to the legitimate image of the ML algorithm as follows:

x∗ = x+ ε sign (∇xJ (x, c)) (2)

where ε denotes a small scalar value which regulates the pertur-
bation’s level, c is the input label, J ( ) denotes the model cost
function, ∇x is the gradient of the trained model with respect
to the legitimate image, and sign(.) is the common mathemat-
ical function which yields the sign of its input argument. The
common property of white-box attacks is utilizing the model’s
information for generating the adversarial example. In contrast,
the black-box attack does not have any information about the
model’s structure and parameters, and training dataset [17]–[20].
This type of attack is more practical because in many cases
having access to the training dataset is not possible. Also, some
information such as the model’s parameters, number of layers,
and loss function may not be public.

Black-box attacks can be separated into three categories: non-
adaptive, adaptive and strictly black-box attacks [12].

In a non-adaptive black-box attack, an attacker can have
access only to the distribution of the training dataset [21]. In
the adaptive black-box case, the attacker does not have any
information about the distribution of the dataset, however she
can access the target model as an oracle. It means, the attacker
can query the output labels of legitimate samples as well as
adversarial samples [24], [25]. In the strict black-box attack, the
attacker does not have access to the training distribution of the
dataset and also she cannot adaptively modify the input query
to observe the model’s output. In other words, an attacker can
query the legitimate input samples, but if she slightly perturbs an
input sample to observe its output label, the system identifies this
process as a malicious attack [12], [22]. Although these types of
systems may provide high level of security, in many real cases
input samples may be very similar to each other and as a result,
there is no need to block the user. Adaptive black-box attacks are
more applicable than non-adaptive or strict black-box attacks as
they do not have any knowledge about the distribution of the
training dataset and assumes the system would not block a user
by evaluating a limited number of close queries. However, if the
number of queries increases, the system may detect a probable
malicious attack.

In [26], authors proposed generating adversarial examples
based on perturbing one-pixel of an image through differential
evolution. Although this method could fool almost CNN models
due to the inherent features of differential evolution, there is no
limit for the number of queries to attack the model. Papernot
et al. [17] proposed a practical approach for generating adver-
sarial examples based on Jacobian-based dataset augmentation
technique to obtain new synthetic training samples. After having
an adequate number of samples and corresponding labels, they
train a local model and apply a white-box attack (such as FGSM)
on this locally trained model to generate adversarial examples.
They use the transferability property of ML algorithms [18].
Transferability is a property that enables us to apply adver-
sarial examples generated by a model on another model with

the same or different architecture. The applicability of such
attacks mainly revolves around the transferability property of
ML models and having enough large dataset for training the
local model. Recently, Hosseini et al. [23] proposed a three-step
null labeling method to block the transferability property of the
ML models. In the first step, they train the model based on clean
data, then they add some perturbations to the input data, and
based on some threshold and probability functions, they assign
the label ‘Null’ to the perturbed image. Then, they retrain the
model with clean and new adversarial examples which have
null labels. This approach enables the model to detect the input
adversarial examples by predicting as a ‘Null’. The previous
black-box attacks try to generate adversarial examples based on
a white-box approach. In other words, they train a local fake
model, then apply a white-box attack to generate adversarial
examples.

There are some black-box approaches that are not based on
the white-box approaches. In [24], the effectiveness of restricting
the search for adversarial images to a low frequency domain has
been investigated. After focusing on the lower frequency sub-
space, they randomly perturb the components while restricting
the perturbation level. It can be described as adding a low-filtered
random noise to the legitimate image. This approach could out-
perform many black-box attacks. Y. Sharma et al. [25] used dis-
crete cosine transform (DCT) dictionary to map the image into
the frequency domain, then they put a hard threshold for choos-
ing LoF components. After transformation into the frequency
domain, most of the frequency components have small values
and only a few of them have large values. This property of the
frequency domain is well known as a sparse representation of an
image. Then, by applying perturbations on the LoF components,
they could generate faster and more transferable adversarial
examples. This approach can completely bypass most of the
top-placing defense strategies at the NeurIPS 2017 competition.
The authors also investigated the effect of perturbation on high
frequency (HiF) components, but their results show that LoF
components are the ones that mostly affect CNN models. We
motivated by the aforementioned work and used DCT dictio-
nary to transfer images into the sparse (frequency) domain.
Then, instead of putting a hard threshold for choosing only k
LoF components, we selected k LaS components where some
low, middle, and high frequency components are picked up. In
Section II-A, we show the difference between LaS and LoF
components.

Focusing on LaS components have been used in many image
processing and compression techniques. The JPEG codec [27]
takes advantage of this property in order to compress the images.
Because, the most critical features and information of an image
are available in the LaS components and not just LoF com-
ponents [27]. Intuitively, image classifiers are mostly consider
specific components which bear more information of an image.
We verify this property of image classifiers by implementing
systematic experiments (Section II-B). We propose adding noise
to LaS components in two scenarios. In the first scenario,
we randomly perturb LaS components, and by restricting the
perturbation level, the number of required queries to fool the
state-of-the-art classifiers are evaluated. Our experiment results
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show that the proposed approach can fool the classifiers with less
number of queries compared to the very recent approach which
works based on LoF components [25]. In the second scenario, a
directed attack, we suppose a few number of images from each
class are available. Given a legitimate image, we perturb its LaS
components in the direction of the most correlated sparse sample
from a different class. Our experiments show that this method
can successfully fool the state-of-the-art CNN classifiers.

In this study, the summary of our contributions are as follow:
� We introduce a black-box approach to generate adversarial

examples in the sparse domain in order to fool the ML
algorithms such as CNN models, support vector machine
(SVM) classifiers, object detection algorithm (YOLOv5),
and model trained by the Google Cloud Vision API.

� In contrast to the very recent black-box attacks which
focused on LoF components, we show that the LaS com-
ponents can fool the classifiers with a fewer number of
queries.

� We proposed an analytical approach to show the relation
between the perturbation level in the sparse domain and its
effect on the pixel domain. Our results show the proposed
method decreases the number of required queries to fool
the ML models and increases the misclassification rate of
ML models.

II. SPARSITY

Sparsity has been widely used in many applications such
as image denoising, deblurring, super resolution, and compres-
sion [28]–[32]. An image signal X ∈ Rp×q can be reshaped to a
vectorx ∈ RN=p×q whereN is the number of pixels. Dictionary
D ∈ RN×L is a matrix which linear combination of its columns
di can approximately represent the x as follow

x =
∑

i∈{1,2,..L}
sidi = Ds (3)

where s ∈ RL is the weight vector. If D provides a weight
vector with only k large and l − k negligible or zero elements,
then D and s can be called as a sparsifying dictionary and
sparse representation of input x, respectively. For brevity, by
the rest of this work, we omit the “sparsifying” and refer to
the “dictionary” as a sparsifying dictionary. There are some
fixed dictionaries based on analytical approaches such as Fourier
or wavelet transform which can be designed very fast. In this
work, we used DCT dictionary which is an orthonormal matrix
(D ∈ RN×N and ||di||2 = 1). The coefficients of DCT dictio-
nary can be obtained as follows,

di,j = ai,j cos
π(2i− 1)(j − 1)

2˜N
˜˜˜˜˜˜˜i, j ∈ 1, 2, . . . , N

ai,j =

⎧⎨
⎩
√

1
N ˜˜j = 1√
2
N ˜˜j �= 1

(4)

where di,j corresponds to the entry of ith row and jth column of
DCT dictionary. If we transfer an image into the DCT domain,
zeroing small components will have negligible effects on the
visual information of the image. For example, Fig. 1 illustrates

Fig. 1. Transferring image into the sparse domain and zeroing small elements
of sparse signal: (a) original image, (b) zeroing 70%, (c) 80%, and (d) 90% of
small elements.

this property. The original image was transferred into the sparse
domain via DCT dictionary and forced 70%, 80%, and 90% of
its small components to zero, then transformed back into the
pixel domain. It is evident that reconstructed images based on
only 30%, 20%, or 10% of its LaS components can still preserve
lots of visual information of the image.

A. Difference Between LaS and LoF Components

Sparse domain enables us to have access to the important
frequency components of an image. Components may belong
to low, middle, or high frequency bands. Regardless of the fre-
quency bands, if we choose some top-ranked components, those
specific components can belong to any frequency bands. Some
images may have some information in the middle or even higher
frequencies, as a result, they would have LaS components cor-
responding to the middle or higher frequencies. To evaluate the
level of intersection between LaS and LoF components, we used
10,000 color images of size 256 × 256 pixels. The images had
three color channels, and we mapped each channel into the sparse
domain, separately. Then we selectedN = (k × k × 3)LaS and
LoF components. For chosen k = 8, k = 16, and k = 32, the
number of components are N = 192, N = 768, N = 3072, re-
spectively. Fig. 2 shows how many non-intersecting components
are available between LaS and LoF components. For k = 8,
the mean of non-intersecting components is 77, i.e., more than
40% of the LaS components belong to the middle or higher
frequencies components. For k = 16 and k = 32 the mean of
non-intersecting components are 229 and 983, i.e. 39% and
32% of the LaS components do not belong to the low frequency
space. This experiment shows that the LaS components does not
completely overlap with the LoF components, and some critical
information of the image signals may belong to the middle or
high frequency bands. In other words,for every image, different
bands have different information, as a result, we cannot limit
critical information of an image to only its low frequency space.
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TABLE I
THE EFFECT OF KEEPING ONLY 50% OR 30% OF LAS, LOF, AND HIF COMPONENTS ON THE ACCURACY OF SIX CNN MODELS (%)

Fig. 2. The number of non-intersecting components of each image.

In next section, we evaluate the effects of manipulating different
frequency bands on the performance of CNN models.

B. Effect of LaS Components on CNN Models

Sparse transformation enables us to compact the energy of the
signal into a few components. On the other hand, many image
classifiers work based on pixel domain and they do not directly
consider the sparse domain. A question that may arise here is:
“how much manipulating LaS, LoF, or HiF components can
affect classifiers’ performance?”. In this study, we empirically
show that the LaS components are the most important part of
images that affect the classifiers’ performance. Our experiment
was implemented over six state-of-the-art CNN models namely,
EfficientNet-B0 and B1 [33], ResNet50 [34], InceptionV3 [35],
MobileNets [36], and DenseNet121 [37]. We used CIFAR-10
dataset which is a color and balanced image dataset with com-
plex background. This dataset contains 50,000 training samples
and 10,000 test samples belong to 10 classes. We trained these
models with 50,000 training samples, and then we input the
original 10,000 test samples (without any changes or manipula-
tion) to obtain the ground truth accuracy of each trained model
(Table I). In next step, via DCT dictionary we transferred all
10,000 test samples into the sparse domain. Then we kept 50%
and 30% of LaS, LoF, and HiF components, and zeroed the rest
of the components. We transformed back each image to the pixel
domain, and input them to the same trained model. To further
clarify, after putting these thresholds, we obtained 6 test datasets,

two for Las components, two for LoF components and two for
HiF components.

As shown in Table I, the accuracies belong to LaS components
test datasets are much closer to their corresponding ground truth
accuracies. While keeping only LoF or HiF components lead to
considerable lost of accuracy. It shows that if we only focus
on LoF or HiF components, we lose some components that
affect the decision boundaries of CNN models. For example,
Efficient-B1 which is one of the best image classifiers that
has been introduced by Google in 2019, has the accuracy of
95.46% for the original test dataset. If we keep only 50% of LaS
components, the accuracy is almost the same 94.78%. If we keep
50% of LoF and HiF components, the accuracies are 80.25%
and 37.36%, respectively. To elucidate on, only 50% of LaS
components affect classifiers, the other 50% components does
not much affect the accuracy. This experiment helps us to find out
which frequency components mostly affect the CNN models. By
having this information, we would be able to add perturbation
on important components in order to fool image classifiers.
Also this experiment verified the results of [25] that showed
the importance of LoF vs HiF components. They reached to this
conclusion that perturbing LoF components is more effective
than perturbing HiF components. For the brevity, we omitted
the results of our experiments over other CNN models, and
different threshold levels which had the same results to verify
our assumption. We release our code publicly for reproducibility.
In next section, we add a limited perturbation to LaS and LoF
components, to see which of them can fool the classifiers in a
fewer number of queries.

III. PERTURBING LAS COMPONENTS

In the adaptive black-box attack there is no prior infor-
mation about the model’s parameters and distribution of the
training dataset, yet attacker can query the label of legitimate
sample and corresponding perturbed sample. However, if the
number of query to be increased, the system may identify a
malicious activity. Obviously, an adversarial attack is more
practical if it fools classifiers in a fewer number of queries. we
designed a systematic experiment to evaluate the effectiveness
of adding perturbation on LaS components. Our results demon-
strate that proposed approach requires fewer number of queries
to fool image classifiers. In this experiment, six CNN models
(EfficientNet-B0 and B1, ResNet50, InceptionV3, MobileNets,
DenseNet121) were used. we trained all models with 50,000
training samples of CIFAR 10 dataset. We used 10,000 test
samples of CIFAR-10 dataset that had never been used in training
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Fig. 3. Comparing the required number of queries to fool CNN models based on proposed approach (LaS), and LoF [25].

process to apply the attacks. We utilized DCT dictionary to
transfer test samples into the frequency domain. We used a
Gaussian noise with zero mean and variance 1 to generate noise,
and to have fair comparison with [25], we defined the MSE less
than 0.001 as a successful attack. We compared adding noise to
k = 8 LaS and LoF components. In Fig. 3, the histograms of
required number of queries to successfully fool aforementioned
CNN models are demonstrated. The distributions of successful
attacks show that manipulating LaS components can fool the
CNN models in a fewer number of queries. Fig. 4 shows the
number of all misclassified images in query less or equal to 10.
In this experiment, we firstly evaluated the models’ prediction
for each legitimate sample. If a model predicted a legitimate
sample wrongly, we put aside that sample and did not involve it
to the experiment (because it was already misclassified). Hence,
the number of misclassified images in Figs. 3 and 4 are only due
to the perturbation on samples.

IV. CASE STUDY: DIRECTED PERTURBATION

In this section, we propose a method for adding noise to
the LaS components in order to fool the model into a specific

Fig. 4. Comparing number of misclassified samples for query less or equal to
10 based on LaS and LoF [25].

direction. In the black-box approach, the attacker can use some
samples that have never been used for training stage. Then, the
attacker can verify or find the input sample’s label by observing
the output of the objective model. In this section, we assume
the attacker can have multiple samples of each class and their
labels. Suppose the available dataset is X = {xi}i=p

i=1 which
contains p samples and each sample belongs to one class out of
m available classes, i.e.,C(xi) ∈ {cj}j=m

j=1 . We map all samples
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of the dataset into the sparse domain via DCT dictionary D.
Doing so,S = {si}i=p

i=1 would be obtained where si is the sparse
representation of thexi. In the sparse domain, we keep the k LaS
components and force the rest of the components to zero. Then
each sparse vector is normalized. Doing so, we would have

Ŝ = {ŝi}i=p
i=1 , ||ŝi||0 = k, ||ŝi||2 = 1 (5)

where ||.||0 is the zero-norm of a vector which counts the number
of non-zero elements of a vector. Sparse vector ŝi contains
information of the positions and normalized values of the k
largest elements of si which belong to class C(si). Then for
a given (ŝi, C(si)), we find the most correlated sparse vector
(ŝj , C(sj) �= C(si)). In other words, sparse vector ŝj is the
closest sparse vector to the ŝi, but they belong to different classes.
We used the inner product of two vectors 〈ŝi, ŝj〉 to calculate
the correlation. If we change the k most important elements of
ŝi with respect to the k most important elements of ŝj , some
information and features of ŝj can be transferred into the ŝi. If
some nonzero elements of ŝi and ŝj have the same positions
and close values, there is no need to change or manipulate them.
Because they have common information and changing them
cannot help for fooling classifier and may bring unnecessary
perturbation in the pixel domain. To prevent this probable issue,
we subtract these two vectors to obtain the difference dij as
follows:

dij = ŝi − ŝj (6)

Then, we subtract a multiplier of dij from the original sparse
vector si to obtain sparse adversarial example s̃i as follows:

s̃i = si − δdij (7)

where δ is a scalar number that controls the level of directed per-
turbation. Then, we transfer back the adversarial sparse vector
s̃i to the pixel domain via dictionary D as follows:

x̃i = Ds̃i (8)

where x̃i is the adversarial example. Since the response of ML
classifier for sj is C(sj), when we add the elements of ŝj
to the ŝi, the classifier may be fooled. By choosing δ and k
properly, ML classifiers can be fooled. Two scalar parameters
k and δ control the level of perturbation. When we increase
these scalars, the level of perturbation in the pixel domain
and misclassification rate would be increased accordingly. Two
error metrics to compare the adversarial image quality with the
legitimate image are the Mean Square Error (MSE) and the Peak
Signal to Noise Ratio (PSNR). The MSE yields the cumulative
squared error between the adversarial and the legitimate image,
whereas PSNR gives a measure of the peak error. The higher the
value of PSNR, the higher the quality.

MSE =
||xi − x̃i||22

N
(9)

PSNR = 10 log10

(
h2

MSE

)
(10)

where h is the maximum fluctuation in the input image data
type. For example, since we normalized all image dataset to the

TABLE II
COMPARING MISCLASSIFICATION RATES OF DIRECTED ATTACK OVER SIX CNN

MODELS BASED ON PROPOSED METHOD (LAS) AND RECENT

METHOD (LOF) [25]

range of [0, 1], input images’ pixels fluctuate between zero and
one, so h = 1. Before investigating the relation between mis-
classification rate and quality metrics, we recall two important
properties of the matrix-vector multiplications; first, the product
of an orthonormal matrix by a vector does not change the norm-2
of that vector, and second, a scalar number can take out of the
norm-2 of a vector. With respect to these two properties, since
||xi − x̃i||22 = ||δDdij||22 and due to the fact that the dictionary
D is an orthonormal dictionary and the δ is a scalar value,
||xi − x̃i||22 = δ2||dij||22. (9) can be further simplified to obtain
more straightforward relation between δ and MSE or PSNR
in pixel domain as follows:

MSE =
δ2

N
||dij||22 =

δ2

N
||ŝi − ŝj ||22 =

2δ2

N
(1− 〈ŝi, ŝj〉)

(11)
where 〈·, ·〉 is the inner product operation of two vectors. Since
both ŝi and ŝj are normalized vectors, their inner product equals
a number belongs to [−1, 1]. Hence MSE can be bounded 0 ≤
MSE ≤ 4δ2

N . However, as we choose two most correlated sparse
vectors, their inner product is usually greater than zero. Hence,
the upper bound of MSE may be smaller, i.e. 0 ≤ MSE ≤ 2δ2

N .
This inequality shows how adding perturbation in the sparse
domain can be reflected in the perturbation in the pixel domain.
The value of the δ directly affects the MSE. The order of
sparsity, k, only has its effect on the inner product.

We applied the directed attack over the same six CNN models,
and compared the effectiveness of adding noise to the LaS
components against adding noise to the LoF components. In
this experiment, we used multiple values for {k = 20, 30, 40},
and we fixed the value of δ in order to have MSE ≤ 0.001.
Table II shows the results and superiority of manipulating LaS
components.

As theoretically was discussed, changing δ can directly affect
the perturbation level. To show this property, we trained the
LeNet network [38] with 60,000 training samples of MNIST
dataset and achieved the accuracy of 98.2% which means 1.8%
misclassification rate over 10,000 test samples. Then, we used
the same test dataset and selected 6 different values for the δ and
k. It leads to running 36 times, all combinations of δ and k to
generate corresponding perturbed test dataset. Then we input all
these 36 adversarial sets to the LeNet classifier to observe the
response of the network. Fig. 5 illustrates the effect of δ and k,
PSNR, and misclassification rate of LeNet network. The left and
right y-axes show the PSNR value the misclassification rate of
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Fig. 5. Generating adversarial examples with different level of perturbation
on LeNet.

Fig. 6. Generating adversarial examples with different level of perturbation
on SVM classifier.

each perturbed dataset, respectively. Solid blue lines show that
PSNR decreases as delta value increases, and dash lines show
that the misclassification rate increases as we increase the value
of δ. We also evaluated the effectiveness of our proposed attack
on the SVM classifier. Due to the computational limitation,
we only used 15000 training and 3000 test samples of MNIST
dataset. After trying multiple kernels, the polynomial kernel was
the best kernel to achieve the highest score for the classification.
The misclassification rate of the trained SVM classifier on the
benign test dataset was 5%. Then we generated adversarial sets
with different levels of perturbation. Fig. 6 shows that the SVM
classifier is highly vulnerable to the proposed attack.

We compared our approach with a recent work by Papernot
et al. [17] which is not based on frequency domain. We used
the Cleverhans library [39], and to have a fair comparison, the
same CNN and parameters were used. We trained the network
10 times, and after each time the misclassification rate of the

Fig. 7. Comparing the misclassification rate of proposed method of perturba-
tion and recent practical black-box (BBX) approach. [17].

Fig. 8. Information of dataset and trained model by Google Cloud Vision.

trained model on both adversarial sets was recorded. Fig. 7 shows
for δ = 15 and k = 20, our proposed adversarial examples have
higher misclassification rate than that of the previous work, while
our method has a higher PSNR which means less perceptible
perturbation.

V. ATTACKING GOOGLE CLOUD VISION AND YOLO

To evaluate the realistic threat of LaS components perturba-
tion, we attacked a popular online machine learning service,
Google Cloud Vision. The platform provides a TFLite version
that can be deployed over Android operating systems [40]. We
used a high-resolution dataset which contained 20938 samples
belong to 10 animals “spider, dog, cat, squirrel, sheep, butterfly,
horse, elephant, cow, chicken” [41]. Fig. 8 shows the details
of the trained model by Google Cloud Vision. To assess the
effectiveness of our proposed attack, we downloaded its TFLite
version. We randomly selected 500 test samples and added per-
turbation based on LaS and LoF approaches. By adding limited
noise to LaS components, 132 samples out of 500 samples were
misclassified. Also, adding noise to LoF components led to 129
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Fig. 9. Comparing the required number of queries to fool a TFlite model
trained by GoogleAPI based on proposed approach (LaS), and LoF [25].

Fig. 10. Samples of attacking Google Cloud Vision. The most left column
corresponds to the legitimate image, and the other three columns are misclas-
sified adversarial examples. we supposed MSE > 0.001 as a failure and cor-
responding adversarial examples are bounded by red color boxes. We supposed
MSE = 0.001 as a success and corresponding examples are enclosed by a
green color box.

misclassified samples. Fig. 9 shows the number of required
queries to fool the TFlite model based on both methods. In
addition, Fig. 10 shows three samples and corresponding adver-
sarial examples for MSE values equal to 0.001, 0.002, and 0.005.
The first column shows the legitimate samples that are classified
correctly by the classifier, the second column from the left which
closed by a green box, belongs to the adversarial examples with
MSE = 0.001, the other two columns with red boxes related
to the adversarial examples with MSE = 0.002 and 0.005. As
defined in [25], we set the threshold of MSE ≤ 0.001 as a
successful attack.

In addition, we applied our attack over an object detection al-
gorithm. Object detection has been widely used by autonomous

Fig. 11. Performance of YOLOv5 over skin lesion dataset (ISIC-2017).

Fig. 12. Samples of attacking the object detection algorithm (YOLOv5).
The left column corresponds to the legitimate images that have been correctly
detected and classified, and the right column corresponds to the misclassified
objects.

vehicles and biomedical devices. One of the fastest and most
accurate object detection algorithms is YOLOv5 [42]. YOLOv5
is a one-stage algorithm that implements classification and
regression tasks in a single step. Object detection algorithms
implement two tasks, detection and classification. In certain
sensitive applications, if the model fails to detect the object
correctly or predict the label wrongly, it may cause irreversible
consequences. In this experiment, we used International Skin
Imaging Collaboration (ISIC)-2017 skin lesion dataset that
contains 2000 training samples, 150 validation samples, and
600 test samples belong to three skin lesion classes: melanoma,
nevus, and seborrheic keratosis. We resized the input samples
into 640×640 pixels and set two parameters as Intersection
over Union (IoU) to 0.50 and confidence threshold to 0.25. We
trained the model and evaluated its performance over 600 test
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samples. Fig. 11 shows the performance of trained model over
test dataset. Precision is a metric that measures how accurate
is the predictions, while recall measures how good the model
finds all the positive cases. IoU measures the overlap between
predicted box around the object with the ground truth. The model
achieved mean Average Precision (mAP) equal to 0.72 over three
classes. In next step, we randomly selected some test samples
that had never been used in training process to add perturbation
and observe the model response. Our results show that by
adding limited noise to the LaS components, this model predicts
wrong labels with high confidence scores. In Fig. 12, we only
showed few adversarial examples that had been misclassified.
However, there were adversarial samples that model could not
detect any object. In this experiment, we set MSE ≤ 0.001 to
generate adversarial examples. We released our code, the TFlite
model trained by Google Cloud Vision, trained object detection
model, and the annotation files of ISIC-2017 dataset publicly
for reproducibility [43].

VI. CONCLUSION

In this work, we proposed a new approach for generating
adversarial examples in the sparse domain. We show LaS com-
ponents are different from LoF components, and they belong
to all frequency bands (low, middle, or high). We proposed a
hypothesis that LaS components affect the decision boundaries
of CNN models much more than LoF components. This hypoth-
esis was the key to build our proposed adversarial method. We
designed a systematic experiment to support this hypothesis. By
running experiments over six advanced CNN models, we empir-
ically verified that LaS components affect decision boundaries
of CNN models more than LoF components. Then we added a
limited noise to the LaS components to generate our proposed
adversarial example. We evaluated the response of six advanced
CNN models against our adversarial examples and compared
it with recent work. Our results over MNIST and CIFAR-10
datasets unanimously support this hypothesis that adversarial
examples generated based on manipulating LaS components,
can fool the CNN models in much fewer number of queries than
that of the LoF approach. We also implemented our experiments
over Animal and skin lesion ISIC-2017 datasets to evaluate
Google Cloud Vision API and YOLO algorithm. Results show
the effectiveness of our proposed method to fool aforementioned
models. By introducing the potential threat within this type of
attack, an appropriate defense mechanism can be investigated
in the future. Moreover, we used DCT dictionary to transfer
images into the sparse domain, however, there are many other
ways to transfer an image into a sparse domain other than the
DCT domain that can be further investigated.
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