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The generalization capability of machine learning models, which refers to generalizing the knowledge for
an ‘‘unseen” domain via learning from one or multiple seen domain(s), is of great importance to develop
and deploy machine learning applications in the real-world conditions. Domain Generalization (DG) tech-
niques aim to enhance such generalization capability of machine learning models, where the learnt
feature representation and the classifier are two crucial factors to improve generalization and make deci-
sions. In this paper, we propose Discriminative Adversarial Domain Generalization (DADG) with meta-
learning-based cross-domain validation. Our proposed framework tries to learn a domain-invariant fea-
ture representation from source domains and generalize it to the unseen domains. It contains two main
components that work synergistically to build a domain-generalized Deep Neural Network (DNN) model:
(i) discriminative adversarial learning, which proactively learns a generalized feature representation on
multiple ‘‘seen” domains, and (ii) meta-learning based cross domain validation, which simulates train/
test domain shift via applying meta-learning techniques in the training process. In the experimental eval-
uation, a comprehensive comparison has been made among our proposed approach and other existing
approaches on three benchmark datasets. The results shown that DADG consistently outperforms a
strong baseline DeepAll, and outperforms the other existing DG algorithms in most of the evaluation
cases.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Machine Learning (ML) and Deep Learning (DL) have achieved
great success in numerous applications, such as skin lesion anal-
ysis [1,2], human activity recognition [3,4], active authentication
[5], facial recognition [6–8], botnet detection [9–11] and commu-
nity detection [12,13]. Most of the ML/DL applications are under-
lying the assumption that the training and testing data are drawn
from the same distribution (domain). However, in practice, it is
more common that the data are from various domains. For
instance, the image data for the medical diagnosis application
might be collected from different hospitals, by different types of
devices, or using different data preprocessing protocols. The
domain shift issue results in a rapid performance degradation,
where the machine learning applications is trained on ‘‘seen”
domains and tested on other ‘‘unseen” domains. Even well-
known strong learners such as deep neural networks are sensitive
to domain shifts [14]. It is crucial to enhance the generalization
capability of machine learning models in the real-world applica-
tions. Because, on one hand, it is costly to re-collect/label the data
and re-train the model for such ‘‘unseen” domains. On the other
hand, we can never enumerate all the ‘‘unseen” domains in
advances.

Domain Generalization (DG), as illustrated in Fig. 1, which aims
to learn a domain-invariant feature representation from multiple
given domains and expecting good performance on the ‘‘unseen”
domains. It is one of the techniques that aiming to enhance the
generalization capability of machine learning models. However,
designing an effective domain generalization approach is challeng-
ing. First, a well-designed DG approach should be model-agnostic.
Domain shift is a general problem in the designing of ML/DL mod-
els, such that the approach should not be designed for a specific
network architecture. Second, an effective DG approach should
not be data-dependent. There exists different types of domain shift,
such as different art forms or different centric-images. A data-
dependent approach can lead promising results on some datasets.
However, the approach can be overfitting to the particular domain
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Fig. 1. Multi-source Domain Generalization: training a model on one or multiple
seen source domains and test on certain ‘‘unseen” target domain.

1 https://github.com/keyu07/DADG.
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shift and might not have comparable performance on the other
datasets. Hence, it is a challenging task to design an effective DG
approach.

To date, a few algorithms have been proposed to enhance the
generalization capability of ML/DL models. For instance, D-SAM
[15] designs a domain-specific aggregation module for each ‘‘seen”
domain, and plugs it on a particular network architecture to elim-
inate the domain specific information. However, it is a model-
based approach, because the aggregation module is designed for
a particular model, and additional implementation of aggregation
module is required when the model changed. Hex [16] is proposed
to learn robust representations cross various domains via reducing
the model dependence on high-frequency textural information.
The original supervised model is trained with an explicit objective
to ignore the superficial statistics, which only presents in certain
datasets. Its representation learning is fully unsupervised, and per-
forms good on certain image datasets. However, due to the
assumption of domain shift and the unsupervised natural, Hex
might not have the promising performance on the other image
datasets. Approaches that leveraging the idea of meta-learning
for domain generalization have been also proposed [17–19]. For
instance, MLDG [17] was inspired by MAML [20] to simulate the
domain-shift and optimize meta-train and meta-test together dur-
ing the training phase. However, it only focuses on the classifier
optimization, and lacks of effective guidance on the feature repre-
sentation learning, where the better feature representation can
benefit the classifier to make decisions.

In this paper, we present a novel DG approach, Discriminative
Adversarial Domain Generalization (DADG). Our DADG contains
two main components, discriminative adversarial learning (DAL)
and meta-learning based cross domain validation (Meta-CDV).
We adopt the DAL to learn the set of features, which provides
domain-invariant representation for the following classification
task, and apply the Meta-CDV to further enhance the robustness
of the classifier. Specifically, on one hand, we consider the DAL
component as a discriminator that trains a domain-invariant fea-
ture extractor by distinguishing the source domain of correspond-
ing training data. On the other hand, we employ meta-learning
optimization strategy to ‘‘boost” the objective task classifier by val-
idating it on previously ‘‘unseen” domain data in each iteration.
The two components guide each other from both feature represen-
tation and object recognition level via a model-agnostic process
over iterations to build a domain-generalization model. Note that
our DADG makes no assumption on the datasets, and it is a
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model-agnostic approach, which can be applied to any network
architectures.

In the experimental evaluation, a comprehensive comparison
has been made among our DADG and other 8 existing DG
algorithms, including DeepAll (i.e., the baseline that simply used
pre-trained network, without applying any DG techniques), TF
[21], Hex [16], D-SAM [15], MMD-AAE [22], MLDG [17], Feature-
Critic (FC) [18], and JiGen [23]. We conduct the comparison and
the evaluation of our approach on three well-known DG bench-
mark datasets: PACS [21], VLCS [24] and Office-Home [25], utiliz-
ing two deep neural network architectures, AlexNet and ResNet-
18. Our experimental result shows that our approach performs
well at cross domain recognition tasks. Specifically, we achieve
the best performance on 2 datasets (VLCS and Office-Home) and

performs 2nd best on PACS. For instance, on VLCS dataset, we
improve on the strong baseline DeepAll by 2.6% (AlexNet) and
3.11% (ResNet-18). Moreover, an ablation study also conducted to
evaluate the influence of each component in DADG.

To summarize, our work has the following contributions:

� We present a novel, effective and model-agnostic framework,
Discriminative Adversarial Domain Generalization (DADG) to
tackle the DG problem. Our approach adopts discriminative
adversarial learning to learn the domain-invariant feature
extractor and utilizes meta-learning optimization strategy to
enhance the robustness of the classifier.
� To the best of our knowledge, DADG is the first work that uses
meta-learning optimization to regularize the feature learning of
discriminative adversarial learning in domain generalization.
� A comprehensive comparison among our algorithm and the
state-of-the-art algorithms has been conducted (Section 4).
For the sake of reproducibility and convenience of future stud-
ies about domain generalization, we have released our proto-
type implementation of DADG. 1

The rest of this paper is organized as follows: Section 2 presents
the related literature review. Section 3 presents the notations in
common domain generalization problem, and describes our pro-
posed algorithm. Section 4 presents the experimental evaluation.
Section 5 presents the conclusion.
2. Related work

2.1. Generative Adversarial Nets (GAN)

Generative Adversarial Nets (GAN) [26] aims to approximate
the distribution Pd of a dataset via a generative model. GAN simul-
taneously trains two components generator G and discriminator D.
The two components, generator and discriminator can be built
from neural networks (e.g., convolutional layers and fully con-
nected layers). The input of G is sampled from a prior distribution
PzðzÞ through which G generates fake samples similar to the real
samples. Meanwhile, D is trained to differentiate between fake
samples and real samples, and sends feedback to G for improve-
ment. GAN can be formed as a two-player minimax game with
value function VðG;DÞ:

min
G

max
D

VðG;DÞ ¼ Ex�Pd ½logðDðxÞÞ� þ Ez�Pz ½logð1� DðGðzÞÞÞ� ð1Þ
GAN-based discriminative adversarial learning is able to learn a

latent space from multiple different domains, where the latent
space is similar to the given domains. It has been used in some
domain adaptation works, which we will discuss below.

https://github.com/keyu07/DADG
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2.2. Domain adaptation

Domain adaptation (DA) is one of the closely related work to
domain generalization. The main difference between DA and DG
is that DA assumes unlabeled target data is available during the
training phase, but DG has no access to the target data. Many
domain adaptation algorithms [27,14,28,29] are designed via map-
ping the source and the target domain into a domain-invariant fea-
ture space. GAN or GAN-based discriminative adversarial
techniques have been utilized in many such domain adaptation
works. For instance, ADDA [27] maps the data from the target
domain to the source domain through training a domain discrimi-
nator. DANN [14] is proposed to train a ‘‘domain classifier” to learn
the latent representations of the source and the target domains.
Tzeng et al. [29] proposes to use multiple adversarial discrimina-
tors to apply on the data of different available source domains. Dis-
criminative adaversarial learning successfully learns the domain-
invariant feature representation, which considered as a latent
space that similar to all source domains. This success motivates
us to optimize the feature learning of domain generalization.

2.3. Domain generalization

In contrast to domain adaptation, domain generalization is a
more challenging problem, because it requires no prior knowledge
about the target domain. Given a ML/DL application that has mul-
tiple ‘‘seen” or/and ‘‘unseen” domains, we observe that each
domain has two elements: the private element and the global ele-
ment. The private element contains the specific representation/in-
formation of each domain, while the global element holds the
invariant features across different domains. Most of the recent
domain generalization works aim to improve the learnt feature
by using one of the two strategies: (i) Eliminating the influence
of the private elements or (ii) Extracting the global elements. Other
than the two main strategies, there are other alternative studies,
such as a data augmentation based method [30] and a recent
self-supervised learning method JiGen [23]. JiGen [23] uses a
jigsaw-puzzle classifier to guide the feature extractor to capture
the most informative part of the images, and it achieves current
state-of-the-art results on three domain generalization benchmark
datasets. We include JiGen [23] in all our evaluations.

Many model-enhancement based studies are proposed under
the first strategy. For instance, Li et al. [21] develops a low-rank
parameterized network to decrease the size of parameters. D’Inno-
cente et al. [15] proposes to build domain-specific aggregation
modules and stack on the backbone network to merge specific
and generic information. However, it is a model based approach.
Because one set of aggregation modules can only apply on one par-
ticular backbone network. Additional implementation is required
when we change the network architecture. Hex [16] is proposed
to learn robust representations cross various domains via reducing
the model dependence on high-frequency textural information.
The original supervised model is trained with an explicit objective
to ignore the so called superficial statistics, which is presented in
the training set but may not be present in future testing sets. Its
representation learning is fully unsupervised, and performs good
on certain image datasets. However, because the assumption of
domain shift and the unsupervised natural of Hex, it might not
have the comparable good performance on the other image data-
sets. However, designing an approach to weaken certain types of
domain-specific elements may suffer from overfitting on such
domain elements. Though some outstanding results have been
shown by this kind of approaches on certain datasets, while may
not be able to be generalized to many more ‘‘unseen” domains.
For instance, the different domain types are considered as different
art forms or different centric-images.
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For the second strategy, most of the previous works are focusing
on learning domain-invariant representation, which is able to
capture the important similar information among multiple differ-
ent domains and have the capability of generalizing to more ‘‘un-
seen” domains. As such, these works are more similar to the
work of domain adaptation. For instance, Ghifary et al. [31] pro-
poses to learn domain-invariant features via a multi-domain
reconstruction auto-encoder. However, the effectiveness for recon-
struction the auto-encoder is limited while applying to more com-
plex datasets [21]. Motiian et al. [32] employs maximum mean
discrepancy (MMD) and proposes to learn a latent space that min-
imizes the distance among images that have the same class label
but different domains. Li et al. [22] proposes to align source
domains to learn a domain-agnostic representation using adversar-
ial autoencoders with MMD constraints, and uses adversarial
learning to match the distribution of generated data with a prior
distribution.

Our approach also belongs to the second strategy. We use the
discriminative adversarial learning to learn a latent distribution
among the source domains. By doing so, we achieve a domain-
invariant feature representation that different domains are indis-
tinguishable. Beyond the domain-invariant feature representation,
in order to improve the relevant classification task, we also pro-
pose a more robust classifier, by using meta-learning based opti-
mization, which leads more competitive classification results. To
the best of our knowledge, this is the first work that uses meta-
learning optimization to regularize the discriminative adversarial
learning in domain generalization.
2.4. Meta-learning

Meta-learning introduces a concept ‘‘learning-to-learn” and
recently receives great interests with applications including few-
shot learning [20,33,34] and learning optimizations [35,36]. It
learns from various tasks during training and such that the model
can be quickly generalized to new tasks. MAML [20] is typical in
those works. It utilizes sampled episodes during training, where
each episode is designed to simulate the few-shot tasks in a
train-test split manner. Recently, a few works have applied this
episodic meta-learning optimization method in domain general-
ization [17,19,18]. For instance, MLDG [17] borrows the idea of
[20] to optimize the classifier, by simulating the train-test domain
shift during training phase. MetaReg [19] proposes to learn a reg-
ularization function for the network classifier. Li et al. [18] pro-
poses to simultaneously learn an auxiliary loss and measure
whether the performance of validation set has been improved.
However, MLDG [17] and MetaReg [19] only focus on classifier
optimization, and are lacking of details addressing the learning of
a domain-invariant feature space. The success of meta-learning
method on the enhancement of classifier robustness motivates us
to optimize the network classifier for domain generalization. To
summarize, in order to address the challenging domain generaliza-
tion problem, we apply discriminative adversarial learning and
meta-learning, where the discriminative adversarial learning
extracts domain-invariant feature representation, and meta-
learning enhances the classifier robustness.
3. Methodology

The design of DADG is based on our assumption that there
exists a domain-invariant feature representation, which contains
the common information for both the ‘‘seen” and ‘‘unseen”
domains. It should satisfy the following properties: (i) The feature
representation should be invariant in terms of data distributions
(domains). Since ML/DL models are designed to transfer the
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knowledge from seen domains to unseen domains, they could fail if
the distributions differ a lot. (ii) It should keep the variance
between different objects (classes). This helps the model to capture
the unique information of different objects and to make precise
decisions. We use two key components in DADG to address the
above two properties: discriminative adversarial learning (DAL)
and meta-learning based cross domain validation (Meta-CDV).
DAL aims to learn a domain-invariant feature representation
where different data distributions are indistinguishable. Therefore,
the domain variance will be minimized. Meta-CDV brings the
learnt features to supervised learning by training a classifier in a
meta-learning manner. It evaluates the validation performance of
previous unseen domains within each training iteration.

We introduce Fig. 2 to better illustrate our DADG in high level.
The goal of DADG is to find the optimized feature representation
point, which satisfies the two properties. A;B and C present the
different domains. DAL and Meta-CDV address DG in two aspects:
(i) As shown by the orange lines, the dash lines are the gradient
directions when tackling feature learning on different domains
rDA andrDB, respectively. While the solid line is the actual gradi-
ent direction guided by DAL and finally reaches a representation
point indistinguishable from given domains. (ii) As shown by the
blue lines, the dash lines indicate the gradient directions when
solving certain tasks rTA and rTB, respectively. While the solid
line denotes the actual gradient direction led by classification task
on two domains and further optimized by cross domain validation
(rTC). The model finally learns a domain-invariant feature repre-
sentation point that satisfies the two properties.

In the rest of this section, we denote the input data space as
x 2 X, the class label space as y 2 Y and the domain label (i.e.,

belonging to which distribution) space as yd 2 Yd. The source
domains are described as Di 2 S, and the target domains as T. Also,
please note that in the rest of this section, the superscript of each
parameter indicates different updating stages within one iteration,
denoted as m, while the subscript indicates different iterations,
denoted as n. We introduce our two main components in the
remaining sections: DAL in 3.1 and Meta-CDV in 3.2. Finally we
summarize the two components together in 3.3.
∇

∇

∇

∇

∇

Fig. 2. Diagram of our DADG. Better view in colors.

421
3.1. Discriminative adversarial learning

As described above, the goal of this component is to learn a
domain classification model, which aims to classify data from dif-
ferent domains. We consider our DAL containing two parts: (i) a
feature extractor f h with parameter h, and (ii) a discriminator dw

with parameter w. Both h and w are learnable parameters during
training phase.

In our approach, we first randomly divide the source domains S
into two mutually exclusive sets: Sd for DAL and Sc for Meta-CDV.
The discriminator acts as a domain classifier, which takes the
learnt sample features f hðxjÞ of each arbitrary input xj and tries to
discriminate its domain label yd. Thus, we need to learn the param-
eters (w) that minimize the classification loss, which as follows:

Ldiscðdwm
n
ðf hmn ðxjÞÞ; ydj Þ ð2Þ

The loss function of DAL is presented as follows:

Fð�Þ ¼
X

Di2Sd

X

xj2Di

Ldiscðdwm
n
ðf hmn ðxjÞÞ; ydj Þ ð3Þ

The objective of the feature extractor is to maximize the dis-
criminative loss, to achieve indistinguishable of the learnt feature
representation. Following the design of GAN [26], the objective
function of our discriminative adversarial learning can be written
as the following minimax optimization:

argmin
wm
n

max
hmn

Fð�Þ ð4Þ

Such minimax parameter updating can be achieved by gradient
reversal layer (GRL) [28], which placed between the feature extrac-
tor and discriminator. During forward propagation, GRL keeps the
learnable parameters same. During back propagation, it multiply
the gradient by �k and pass it to the preceding layer.

To summarize, we update the parameters of feature extractor
and discriminator as follows:

hmþ1n  hmn � a � rð�k � Fð�ÞÞ ð5Þ

wm
nþ1  wm

n � a � rFð�Þ ð6Þ
where the a is the DAL learning rate. Thereafter, the hmþ1n will be
shared in further training within the same iteration (as we illus-
trated in Fig. 3 step r), and um

nþ1 will be used in the next iteration.

3.2. Meta-learning based cross domain validation

After the feature extractor has been trained to minimize the
domain variance, we adopt meta-learning based cross domain val-
idation (Meta-CDV) to address the enhancement of the classifier
robustness. Robust classifier is able to help the feature extractor
to keep the discriminant power between various classes. This is
accomplished by training the classification model on 2 seen
domains Sd in DAL and validating the performance on cross
domains Sc .

To train the model on seen domains Sd, the classification model
is composed of the feature extractor f h from DAL and a classifier cu
with parameters u. The training loss is defined as follows:

Ltrainðcum
n
ðf hmþ1n

ðxjÞ; yjÞ ð7Þ
where xj is an arbitrary input and yj is the corresponding output
label.

The loss function of classification training on seen domains is
presented as follows (as illustrated in Fig. 3 step s):

Gð�Þ ¼
X

Di2Sd

X

xj2Di

Ltrainðcum
n
ðf hmþ1n

ðxjÞÞ; yjÞ ð8Þ



Fig. 3. The training flow of DADG.
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Note that the training is performed over the updated feature
extractor parameters hmþ1 in DAL. As such, the parameters are
updated as follows:

hmþ2n  hmþ1n � b � rGð�Þ ð9Þ
umþ1
n  um

n � b � rGð�Þ ð10Þ

where the b is the classification learning rate. Here the updated
parameter hmþ1n is involved in the calculation of training loss. It also
means that we need the second derivative with respect to h, while
minimizing the loss function 8.

After finishing the classification task on seen domains, we eval-
uate the performance on cross domains Sc to boost the classifica-
tion model. This process simulates the virtual train/test settings.
The evaluation is performed on the updated parameters hmþ2n and
umþ1

n (as illustrated in Fig. 3 step t). More concretely, this evalua-
tion come up with the cross domain validation loss:

Lvalðcumþ1
n
ðf hmþ2n

ðxjÞÞ; yjÞ ð11Þ
The loss function of cross domain validation is as follows:

Hð�Þ ¼
X

Di2Sc

X

xj2Di

Lvalðcumþ1
n
ðf hmþ2n

ðxjÞÞ; yjÞ ð12Þ

Finally, as illustrated in Fig. 3 step s, u and v, we update our
classification model by adding the training loss Ltrain and cross
domain validation loss Lval at the end of each iteration:

hmnþ1  hmþ1n � c � rHð�Þ ð13Þ
um
nþ1  um

n � c � rHð�Þ ð14Þ

where c presents the learning rate of cross domain validation. Note
that the parameter updating on seen domains classification is per-
formed over the parameter hmþ1n and um

n , whereas the cross domain
validation is evaluated over parameter hmþ2n and umþ1

n . In other
words, the optimization of our classification model is involved in
third derivative with respect to h and second derivative with
respect to u.
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3.3. Summary of DADG

As illustrated in Fig. 3, the DAL and Meta-CDV optimize the
model by addressing different aspects of domain generalization,
and work synergistically within one iteration. In each iteration,
we randomly split the train/validation (Sd/Sc) domains. DAL learns
a domain-invariant feature extractor (f h) by maximizing the dis-
criminative loss. Then, our approach learns a robust classification
model by adopting a simple classification training and cross
domain validation, which optimized in meta-learning based man-
ner. For the whole process, the objective function can be intro-
duced as:

argmin
wm
n

max
hmn

Fð�Þ þ argmin
hmþ1n ;um

n

ðGð�Þ þ Hð�ÞÞ ð15Þ

Once Eq. 15 is optimized to converge on the source domains, we
evaluate the classification model using unseen domains.

4. Experimental evaluation

We conduct our experiments on 3 benchmark datasets (PACS
[21], VLCS [24] and Office-Home [25]) and 2 deep neural net-
work architectures with pretrained parameters (AlexNet [37]
and ResNet-18 [38]) to evaluate the generalization capability of
our proposed approach. A comprehensive comparison has been
made among our approach and other baseline approaches. The
presented results are shown that our DADG performs consis-
tently comparable in all the evaluations, and achieves the
state-of-the-art results in two datasets. The effectiveness of each
component in our approach also discussed. All the details are
described in following.

4.1. Baseline approaches

We compare our proposed approach performance with follow-
ing baseline DG approaches.

� DeepAll is the baseline that simply use deep learning network
to train the aggregation of all source domains and test the
unseen domain. It is a strong baseline that surpasses many pre-
vious DG works [21].
� TF [21] introduces a low-rank parameter network to decrease
the size of parameters. This work also shows that the DeepAll
can surpass many previous studies and first provides PACS
dataset.
� Hex [16] attempts to reduce the sensitivity of a model on high
frequency texture information, and thus to increase model
domain-robustness.
� MMD-AAE [22] is based on adversarial autoencoder. It aligns
different domain distributions to an arbitrary prior via MMD
regularization, to learn an invariant feature representation.
� Feature-Critic(FC) [18] aims to train a robust feature extractor.
It uses meta-learning approach, along with an auxiliary loss to
measure whether the updated parameter has improved the per-
formance on the validation set.
� MLDG [17] is the first work that addresses domain generaliza-
tion using meta-learning. It is inspired by MAML [20] and pro-
posed visual cross domain classification task by splitting source
domains into meta-train and meta-test.
� D-SAM [15] plugs parallel domain-specific aggregation modules
on a given network architecture to neglect domain specific
information.
� JiGen [23] is the first work that addresses DG by self-supervised
learning. It divides each image into small patches and shuffle
the order. Then, trains an object classifier and a jigsaw order
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classifier simultaneously. It achieves the state-of-the-art results
on the three datasets VLCS [24], PACS [21] and Office-Home
[25].

4.2. Experimental datasets

We utilize three well-known domain generalization benchmark
datasets.

� VLCS [24] is composed of 10,729 images with resolution 227 �
227, taken from 4 different datasets (i.e., domains): PASCAL
VOC2007 [39], LabelMe [40], Caltech101 [41] and Sun09 [42].
It depicts 5 categories (i.e., classes): bird, car, chair, dog and
person.
� PACS [21] contains more severe domain shifts than VLCS. PACS
aggregates 9,991 images in 7 different classes: dog, elephant,
giraffe, guitar, house, horse and person. It shared by 4 different
domains: Photo, Art, Cartoon and Sketch.
� Office-Home [25] was created to evaluate DA and DG algo-
rithms for object recognition in deep learning. There are
15,592 images from 4 different domains: Art, Clipart, Product
and real-world images, each domain includes 65 classes.

4.3. Experimental setting

All three benchmark datasets contain the data of four different
domains. We first hold one domain (i.e., the target domain) for
testing and the rest three for training. Then, in the training phase,
we randomly select two domains to apply discriminative adversar-
ial learning (DAL), and select one domain to boost our classifier by
meta-learning based cross domain validation (Meta-CDV). Our dis-
criminator consists of two fully connected layer with 1024 neurons
each and one output layer with 1 neuron.

The neural network is updated by stochastic gradient descent
(SGD) in 2000 iterations during training. We use cross-entropy loss
for both DAL (domain classification task) and Meta-CDV (classifica-
tion task). Negative log-likelihood loss also tested for classification
task, but it hardly effects the performance.

For most the hyperparameters, we followed MLDG: base classi-
fication learning rate b ¼ 5� 10�4, cross domain validation learn-
ing rate c ¼ 5� 10�4, momentum = 0.9 and weight decay =
5� 10�5. The DAL learning rate is a ¼ 5� 10�5. While a big a value
will lead an unstable training process and 5 �10�5 is appropriate
for PACS, VLCS and Office-Home. The value of a should be picked
carefully on the other datasets, 1/10 of the b and c is suggested.
The model-agnostic can be achieved by simply changing the back-
bone network architectures without additional implementation.
All of our experiments are implemented using PyTorch, on a server
with GTX 1080Ti 11 GB GPU.

4.4. Effectiveness analysis

In this section, we discuss the performance of our proposed
approach and the baseline approaches in terms of classification
accuracy. Tables 1–3 show the results of datasets VLCS, PACS and
Office-Home. To make a more comprehensive comparison, we
implement MLDG our own, because only demo code is provided
by the author. Besides, we implement Hex, Feature-Critic, D-SAM
and JiGen by using the code that are provided by the authors. All
the implementations are evaluated on the datasets or network
architectures they did not report. Our results of these approaches
are highlighted in the three tables with *. The details of each data-
set are presented below:

VLCS: We follow the standard protocol of MTAE [31] to ran-
domly divide the data of each source domain into training (70%)
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and testing (30%) sets. Finally we test on all the images in target
domain. The upper and bottom part of Table 1 show the results
when using different network architectures AlexNet and ResNet-
18, respectively. From Table 1, we can observe that (i) The baseline
DeepAll performs competitively and surpasses many previous DG
works on overall performance, such as HEX, Feature-Critic and D-
SAM. But our approach outperforms DeepAll in all target domain
cases and on different network architectures. (ii) On AlexNet, our
DADG performs better than DeepAll by 2.6% and better than Jigen
by 1.27%, such that we achieve the new state-of-the-art result on
VLCS dataset. More specifically, DADG provides the best results
in two (i.e., VOC and SUN respectively) out of four target cases.
(iii) On ResNet-18, DADG surpasses the previous SOTA result Jigen
in average performance and performs the best in three out of four
target domain cases.

PACS: We follow the training protocol of TF, considering three
domains as source domains and the remaining one as target. The
evaluation results are shown in Table 2, we can see that: (i) On
AlexNet, although we do not achieve the best performance on
any target domain cases, our DADG provides consistently compara-

ble results, and performs the 2nd best in average results. (ii) On
ResNet-18, we have two best results on Art-paint (79.89%) and Car-
toon (76.25%), and only slight worse (0.34%) than the best JiGen in
average performance.

Office-Home: We follow the protocol of D-SAM, also consider-
ing three as source domains and the rest one as target. The results
are shown in Table 3, and we can observe that: (i) The advantage of
D-SAM in average results originates from its results on Art and Cli-
part, but the rest two were lower than DeepAll. (ii) Our DADG
achieves the best in two target cases and the best in average
results, and improves the previous SOTA result Jigen by 1.02%.

Summary of the Experimental Evaluation: From the experi-
mental evaluation analyzed above, we conclude that: (i) DeepAll
exceeds many previous approaches in different datasets. In gen-
eral, only MLDG, JiGen and our DADG can outperform DeepAll in
all three datasets. (ii) As we mentioned in Section 2.3. The
approaches that aim to neglect particular domain-specific informa-
tion, may assist the model in some datasets but fail in others. For
instance, HEX and D-SAM are better than DeepAll on PACS, but
worse than DeepAll on VLCS. (iii) our DADG has consistently com-
parable results in all the datasets and achieves the SOTA results on
VLCS and Office-Home, also the second best on PACS. On VLCS and
Office-Home, DADG outperforms the previous SOTA JiGen all over
1%.
4.5. Impact of different DADG components

In this section, we conduct an extended study using PACS data-
set with network architecture AlexNet to investigate the impact of
the two key components (i.e., DAL and Meta-CDV) in our proposed
approach DADG. Specifically, we test the performance in terms of
classification accuracy by excluding each component in our
approach respectively. DADG-DAL only contained the discrimina-
tive adversarial learning (DAL) component and trained the classifi-
cation model conventionally instead of in meta-learning manner.
While DADG-CDV meant that we removed the DAL component
and only updated the classification model parameters in meta-
learning manner.

From the results in Table 4, we can see that DADG-DAL and
DADG-CDV consistently perform better than DeepAll, and our full
version DADG surpasses both baseline models in average perfor-
mance and in every target domain cases. In the comparison
between DADG-DAL and DADG-CDV, the DADG-DAL consistently
better than the DADG-CDV. The results in Table 4 show that: (i)
Employing discriminative adversarial learning is able to effectively



Table 1
Cross domain classification accuracy (in %) on VLCS dataset when using network architecture AlexNet and ResNet-18. The results of our implementation were the average over 20
repetitions. Each column name indicates the target domain. Best performance in bold.

VLCS VOC LabelMe Caltech Sun Avg.

AlexNet
TF [21] 69.99 63.49 93.63 61.32 72.11

HEX� [16] 68.51 63.67 89.63 62.12 70.98
MMD-AAE [22] 67.70 62.60 94.40 64.40 72.28

FC� [18] 66.79 61.48 95.68 63.13 71.77
MLDG� [17] 70.01 61.06 95.68 65.08 72.96
D-SAM [15] 63.75 54.81 94.96 64.56 69.52
JiGen [23] 70.62 60.90 96.93 64.30 73.19

DeepAll 68.11 61.30 94.44 63.58 71.86
DADG 70.77 63.44 96.80 66.81 74.46

ResNet-18
MLDG� [17] 74.41 63.45 96.75 69.35 75.99
D-SAM� [15] 70.42 58.70 88.90 71.36 72.35
JiGen� [23] 74.91 63.00 98.39 69.37 76.42

DeepAll 73.84 62.17 97.10 67.28 75.10
DADG 76.17 67.22 98.50 70.95 78.21

Table 2
Cross domain classification accuracy (in %) on PACS dataset when using network
architecture AlexNet and ResNet-18. The results of our implementation were the
average over 20 repetitions. Each column name indicates the target domain. Best
performance in bold.

PACS Photo Art-paint Cartoon Sketch Avg.

AlexNet
TF [21] 89.50 62.86 66.97 57.51 69.21
HEX [16] 87.90 66.80 69.70 56.30 70.18
FC [18] 90.10 64.40 68.60 58.40 70.38

MLDG[17] 88.00 66.23 66.88 58.96 70.02
D-SAM [15] 85.55 63.87 70.70 64.66 71.20
JiGen [23] 89.00 67.63 71.71 65.18 73.38

DeepAll 88.65 63.12 66.16 60.27 69.55
DADG 89.76 66.21 70.28 62.18 72.11

ResNet-18
MLDG� [17] 94.03 76.42 73.03 68.15 77.91
D-SAM [15] 95.30 77.33 72.43 77.83 80.72
JiGen [23] 96.03 79.42 75.25 71.35 80.51

DeepAll 93.06 75.60 72.30 68.10 77.27
DADG 94.86 79.89 76.25 70.51 80.38

Table 3
Cross domain classification accuracy (in %) on Office-Home dataset when using
ResNet-18. The results of our implementation were the average over 20 repetitions.
Each column name indicates the target domain. Best performance in bold.

Office-Home Art Clipart Product Real-World Avg.

ResNet-18
MLDG� [17] 52.88 45.72 69.90 72.68 60.30
D-SAM [15] 58.03 44.37 69.22 71.45 60.77
JiGen [23] 53.04 47.51 71.47 72.79 61.20

DeepAll 54.31 41.41 70.31 73.03 59.77
DADG 55.57 48.71 70.90 73.70 62.22

Table 4
Cross domain classification accuracy (in %) on PACS dataset using AlexNet. The results
of our implementation were the average over 20 repetitions. Each column name
indicates the target domain. Best performance in bold.

PACS Photo Art-paint Cartoon Sketch Avg.

AlexNet
DeepAll 88.65 63.12 66.16 60.27 69.55

DADG-DAL 89.51 65.43 69.19 61.70 71.46
DADG-CDV 89.10 64.22 68.24 60.60 70.54

DADG 89.76 66.21 70.28 62.18 72.11
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guide the feature extractor to learn the invariant features among
multiple source domains. (ii) Since the only difference between
DeepAll and DADG-CDV is the updating manner. Thus applying
meta-learning based cross domain validation can make the classi-
fication model more robust. (iii) The full version DADG consistently
performs the best in every single case, which has shown that com-
bining domain invariant representation and robust classifier
together helped the model to enhance generalization. (iv) The
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domain-invariant representation plays a more crucial role rather
than the robust classifier. Because the invariant representation
provides a easier task for the classifier to make decision.
4.6. Impact of linear related domains

We assume that there exists a domain-invariant feature repre-
sentation for both source and target domains. However, it is also
possible that some target domains are less relevant or even irrele-
vant to the source domains.

The domain types were considered as different art forms (art,
cartoon in PACS) or different centric images (LabelMe and SUN in
VLCS) in previous sections. It is very hard to define whether the tar-
get domain is less relevant to the source domains. To explore this
situation, we conduct an experiment using digit images in six dif-
ferent angles as six different domains. To be more specific, we
adopt the MNIST [43] dataset and randomly chose 1,000 images
in each class and trained with AlexNet [44]. We denote the digit
images rotated with 0�by R0 and then rotate the digit images in a
counter-clock wise direction by 15�, 30�, 45�, 60�and 75�. Since
the rotation angles are continues related, which means sometimes
the target domains are out of the scope of source domains (irrele-
vant). For example, when the R0 and R15 are as the target domains,
we consider that the target domains are out of the scope of source
domains. During the training phase, 4 domains are selected as
source domains and the rest 2 are target domains. For each itera-
tion, our DADG randomly adopts 2 source domains for DAL and
another 2 for Meta-CDV. The model performance will evaluated
on the rest 2 target domains. A comparison is made among Dee-
pAll, MLDG [17] and DADG.



Table 5
Cross domain classification accuracy (in %) on MNIST rotation dataset using AlexNet.
The results of our implementation were the average over 10 repetitions. Best
performance in bold.

Source Target DeepAll MLDG� [17] DADG

AlexNet
R30;R45;R60;R75 R0;R15 69.35 69.51 69.57
R15;R45;R60;R75 R0;R30 89.30 88.89 89.53
R15;R30;R60;R75 R0;R45 89.16 89.18 89.29
R15;R30;R45;R75 R0;R60 88.72 89.10 89.18
R15;R30;R45;R60 R0;R75 84.55 84.64 84.59
R0;R45;R60;R75 R15;R30 92.62 92.56 92.72
R0;R30;R60;R75 R15;R45 94.17 94.43 94.33
R0;R30;R45;R75 R15;R60 94.58 94.65 94.61
R0;R30;R45;R60 R15;R75 90.16 90.16 90.19
R0;R15;R60;R75 R30;R45 92.09 92.41 92.62
R0;R15;R45;R75 R30 ;R60 94.35 94.44 94.40
R0;R15;R45;R60 R30;R75 89.93 90.13 90.24
R0;R15;R30;R75 R45;R60 92.00 92.28 92.22
R0;R15;R30;R60 R45;R75 89.47 89.54 89.65
R0;R15;R30;R45 R60;R75 74.14 74.80 74.83

Average 88.31 88.45 88.53
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From the results in Table 5, we can see that: (i) For all 3
approaches, the performance are better when the target domains
close to 30�and 45�, and much worse when the target domains
close to 0�and 75�. (ii) Our DADG outperforms the other two
approaches in 10 out of total 15 different cases and achieves the
best overall average accuracy among the 3 approaches. The results
show the performance drop when the target domains are irrele-
vant to the source domains. It happens to all the approaches and
can be considered as a common situation in domain generalization.
Although our DADG outperforms other 2 in average, only 10/15
better than the MLDG. Compare to the performance on VLCS, PACS
and Office-Home (Tables 1–3), our DADG does not show significant
advantage on this experiment. Because we select 2 source domains
to do discriminative adversarial learning (DAL), and the rest source
domains will train with Meta-CDV. When the number of source
domains increased, DAL only contributes small portion in each iter-
ation. As we mentioned in the Section 4.5 (iv), DAL plays a more
critical role than Meta-CDV. Finally, if we have a great number of
source domains, the contribution of DAL can be even negligible.
Thus, our DADG is sensitive to the number of source domains.
5. Conclusion

In this paper, we proposed DADG, a novel domain generaliza-
tion approach, that contains two main components, discriminative
adversarial learning and meta-learning based cross domain valida-
tion. The discriminative adversarial learning component learns a
domain-invariant feature extractor, while the meta-learning based
cross domain validation component trains a robust classifier for
the objective task (i.e., classification task). Extensive experiments
have been conducted to show that our feature extractor and clas-
sifier could achieve good generalization performance on three
domain generalization benchmark datasets. Experimental results
indicate that the feature extractor and classifier achieve good gen-
eralization on three benchmark domain generalization datasets.
The experimental results also show that our approach consistently
beat the strong baseline DeepAll. For instance, while using PACS
dataset, our approach performs better than DeepAll by 1.56%
(AlexNet) and 3.11% (ResNet-18). Notably, we also reach the
state-of-the-art performance on VLCS and Office-Home datasets,
and improve the average accuracy by over 1% in each case. As we
mentioned in the 4.6, in current stage, our DADG is sensitive to
the number of source domains because the DAL tends to be unim-
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portant with the increasing number. In the future work, we plan to
address this limitation and design a approach that can handle var-
ious number of source domains.
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