
Neurocomputing 491 (2022) 206–216
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
CS-AF: A cost-sensitive multi-classifier active fusion framework for skin
lesion classification
https://doi.org/10.1016/j.neucom.2022.03.042
0925-2312/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: dizhuang@usf.edu (D. Zhuang), keyu@usf.edu (K. Chen),

chang5@usf.edu (J.M. Chang).
Di Zhuang ⇑, Keyu Chen, J. Morris Chang
Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 9 July 2020
Revised 4 February 2022
Accepted 20 March 2022
Available online 23 March 2022

Keywords:
Deep Neural Networks
Multi-classifier fusion
Active fusion
Ensemble learning
Cost-sensitive classification
Skin lesion analysis
Convolutional neural networks (CNNs) have achieved the state-of-the-art performance in skin lesion
analysis. Compared with single CNN classifier, combining the results of multiple classifiers via fusion
approaches shows to be more effective and robust. Since the skin lesion datasets are usually limited
and statistically biased, while designing an effective fusion approach, it is important to consider not only
the performance of each classifier on the training/validation dataset, but also the relative discriminative
power (e.g., confidence) of each classifier regarding an individual sample in the testing phase, which calls
for an active fusion approach. Furthermore, in skin lesion analysis, the data of certain classes (e.g., the
benign lesions) is usually abundant which makes them an over-represented majority, while the data of
some other classes (e.g., the cancerous lesions) is deficient which makes them an underrepresented
minority. It is more crucial to precisely identify the samples from an underrepresented (i.e., in terms
of the amount of data) but more important minority class (e.g., cancerous skin lesions). In other words,
misclassifying a more severe skin lesion to a benign or less severe skin lesion should have relative more
cost (e.g., money, time and even lives). To address such challenges, we present CS-AF, a cost-sensitive
multi-classifier active fusion framework for skin lesion classification. In the experimental evaluation,
we prepared 96 base classifiers (of 12 CNN architectures) on the ISIC Challenge 2019 research dataset.
Our experimental results show that our framework consistently outperforms both the static and the
active fusion competitors in terms of the accuracy and total costs.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Deep learning (DL) has achieved great success in many applica-
tions related to skin lesion analysis. For instance, Zhang et al. [1]
has shown that convolutional neural networks (CNNs) have
achieved the state-of-the-art performance in skin lesion classifica-
tion. Also, as the development of various deep learning techniques,
numerous different designs of classifiers, that might have different
CNN architectures, use different sizes of the training data, use dif-
ferent subsets or classes distributions of the training data or use
different feature sets, were proposed to tackle the skin lesion clas-
sification problem. For instance, as shown in the ISIC Challenges
[2–4], several CNN architectures have been used in skin lesion
analysis, including ResNet, Inception, DenseNet, PNASNet, etc.
Because of such difference (i.e., CNN architectures, subset of the
training data, feature sets, etc.), those classifiers tend to have dis-
tinct performance under different conditions (e.g, different subsets
or classes distributions of different datasets). There is no one-size-
fits-all solution to design a single classifier for skin lesion classifi-
cation. It is necessary to investigate multi-classifier fusion tech-
niques to perform skin lesion classification under different
conditions.

Designing an effective multi-classifier fusion approach for skin
lesion classification needs to address two challenges. First, since
the datasets are usually limited and statistically biased [2–4], while
conducting multi-classifier fusion, it is necessary to consider not
only the performance of each classifier on the training/validation
dataset, but also the relative discriminative power (e.g., confi-
dence) of each classifier regarding an individual sample in the test-
ing phase. This challenge requires the researchers to design an
active fusion approach, that is capable of tuning the weight
assigned to each classifier dynamically and adaptively, depending
on the characteristics of given samples in the testing phase. Sec-
ond, since in most of the real-world skin lesion datasets [2–4]
the data of certain classes (e.g., the benign lesions) is abundant
which makes them an over-represented majority, while the data
of some other classes (e.g., the cancerous lesions) is deficient which
makes them an underrepresented minority, it is more crucial to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.03.042&domain=pdf
https://doi.org/10.1016/j.neucom.2022.03.042
mailto:dizhuang@usf.edu
mailto:keyu@usf.edu
mailto:chang5@usf.edu
https://doi.org/10.1016/j.neucom.2022.03.042
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


D. Zhuang, K. Chen and J. Morris Chang Neurocomputing 491 (2022) 206–216
precisely identify the samples from an underrepresented (i.e., in
terms of the amount of data) but more important minority class
(e.g., cancerous skin lesions). For instance, a deadly cancerous skin
lesion (e.g., melanoma) that rarely appears during the examina-
tions should be barely misclassified as benign or other less severe
lesions (e.g., dermatofibroma). Specifically, misclassifying a more
severe lesion to a benign or less severe lesion should have relative
more cost (e.g., money, time and even lives). Hence, it is also
important to enable such ‘‘cost-sensitive” feature in the design of
an effective multi-classifier fusion approach for skin lesion
classification.

In this work, we propose CS-AF, a cost-sensitive multi-classifier
active fusion framework for skin lesion classification, where we
define two types of weights: the objective weights and the subjec-
tive weights. The objective weights are designed according to the
classifiers’ reliability to recognize the particular skin lesions, which
is determined by the prior knowledge obtained through the train-
ing phase. The subjective weights are designed according to the
relative confidence of the classifiers while recognizing a specific
previously ‘‘unseen” sample (i.e., individuality), which are calcu-
lated by the posterior knowledge obtained through the testing
phase. While designing the objective weights, we also utilize a cus-
tomizable cost matrix to enable the ‘‘cost-sensitive” feature in our
fusion framework, where given a sample, different outputs (i.e.,
correct predictions or all kinds of errors) of a classifier should
result in different costs. For instance, the cost of misclassifying
melanoma as benign should be much higher than misclassifying
benign as melanoma. In the experimental evaluation, we trained
96 base classifiers as the input of our fusion framework, utilizing
twelve CNN architectures on the ISIC Challenge 2019 research
dataset for skin image analysis [2–4]. We compared our approach
with two static fusion baseline approaches (i.e., max voting and
average fusion) and two state-of-the-art active fusion approaches
(i.e., MCE-DW [5] and DES-MI [6]). Our experimental results show
that our CS-AF framework consistently outperforms the static
fusion baseline approaches and the state-of-the-art competitors
in terms of accuracy, and always achieves lower total cost.

To summarize, our work has the following contributions:

� We present a novel and effective multi-classifier active fusion
framework, where the proposed multi-classifier weight assign-
ment not only leverages the ‘‘reliability” (i.e., the objective
weights) extracted from the prior knowledge of the training/-
validation dataset, but also take advantages of the ‘‘individual-
ity” (i.e., the subjective weights) computed from the posterior
knowledge of the testing dataset.

� We propose an approach to enable the ‘‘cost-sensitive” feature
of our multi-classifier active fusion framework, where the pro-
posed multi-classifier weight assignment can easily actively
adapt to different customized cost matrices.

� To the best of our knowledge, our work is the first one that
attempts to apply active fusion for skin lesion analysis, and
demonstrates its advantages over the conventional static fusion
and existing active fusion approaches. Specifically, a compre-
hensive experimental evaluation using twelve popular and
effective CNN architectures has been conducted on the most
popular skin lesion analysis benchmark dataset, ISIC Challenge
2019 research datasets [2–4]. For the sake of reproducibility
and convenience of future studies about fusion approaches in
skin lesion analysis, we have released our prototype implemen-
tation of CS-AF, information regarding the experiment datasets
and the code of our comparison experiments. 1
1 https://github.com/keyu07/CS-AF
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The rest of this paper is organized as follows: Section 2 presents
the related literature review. Section 3 presents the notations of
cost-sensitive active fusion, and describes our proposed frame-
work. Section 4 presents the experimental evaluation. Section 5
makes the conclusion.
2. Related work

2.1. Multi-classifier fusion

Fusion approaches have been widely applied in numerous
applications, such as skin lesion analysis [7–9], human activity
recognition [10,11], active authentication [12], facial recognition
[13–15], botnet detection [16–18], domain generalization [19]
and community detection [20,21]. In terms of whether the weights
are dynamically/adaptively assigned to each classifier, the multi-
classifier fusion approaches are divided into two categories: (i) sta-
tic fusion, where the weight assigned to each participating classi-
fier will be fixed after its initial assignment, and (ii) active fusion,
where the weights are adaptively tuned depending on the charac-
teristics of given samples in the testing phase. Many conventional
approaches, such as the bagging [22], boosting [23,24] and stacking
[25], are static fusion approaches.

To date, a few methods attempting to conduct active fusion
were also proposed [5,26,6,27,28]. For instance, Chen et al. [27]
propose to use an attention model to fuse the weights of different
CNNs trained on different scaled input images. Fang et al. [28] pro-
pose to use an U-shape pyramid neural network structure to facil-
itate the need of training multi-scale CNNs on multiple partially
labeled datasets. Both approaches [27,28] present some interesting
ideas in adaptively fusing multiple CNNs trained on different data-
sets. However, both solutions mainly focus on multi-scale image
datasets, rather than imbalanced or cost-sensitive datasets.
META-DES [26] defines five distinct sets of meta-features to mea-
sure the level of competence of a classifier for the classification
of input samples, and proposes to train a meta-classifier to deter-
mine the rank or weight of a base classifier while facing input sam-
ples. However, those meta-classifiers were trained on the same
dataset (i.e., the training dataset) as the base classifiers, which
would make the meta-classifiers be less effective or generalized
to the ‘‘unseen” dataset (i.e., the testing dataset). Also, META-DES
has only been evaluated on several small sample size datasets,
which didn’t demonstrate its effectiveness, scalability and general-
izability towards more complex datasets or problems, e.g., skin
lesion analysis. DES-MI [6] propose an active fusion approach
where the weights are determined via emphasizing more on the
classifiers that are more capable of classifying examples in the
region of underrepresented area among the whole sample distribu-
tion. However, DES-MI only focuses on identifying the most com-
petent classifiers on the training dataset, which cannot provide
enough adaptivity towards the ‘‘unseen” testing dataset. MCE-
DW [5] proposes to use the decision credibility that is evaluated
by fuzzy set theory and cloud model, to determine the real-time
weight of a base classifier regarding the current sample in the test-
ing phase. However, both DES-MI and MCE-DW are designed to
work on imbalanced dataset, rather than providing the adaptivity
and flexibility to a cost-sensitive dataset with customized cost
matrices, e.g., skin lesion analysis.

In our work, we propose a novel multi-classifier active fusion
framework, that leverages the ‘‘reliability” (Section 3.3) and the
‘‘individuality ” (Section 3.4) of the base classifiers to assign the
weights dynamically and adaptively. Also, we propose an approach
to enable the ‘‘cost-sensitive” feature of our framework, where the
proposed multi-classifier weight assignment can easily actively
adapt to different customized cost matrices.
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2.2. Fusion of CNNs for skin lesion analysis

Convolutional neural networks (CNNs) have achieved the state-
of-the-art performance [2–4] in skin lesion analysis since 2016
(i.e., ISIC 2016 Challenge [2]), where nearly all the teams employed
CNNs in either feature extraction or classification procedure.
Recently, several approaches attempting to apply fusion on CNNs
to tackle the skin lesion classification problems are proposed
[29,30,7]. For instance, Marchetti et al. [29] presents a fusion of
CNNs framework for the classification of melanomas versus nevi
or lentigines, where five fusion approaches were implemented to
fuse 25 different CNN classifiers trained on the same dataset of
the same problem to make a single decision. Bi et al. [30] proposes
another CNNs fusion framework to tackle the classification of mel-
anomas versus seborrheic keratosis versus nevi, where three
ResNet classifiers were trained for three different classification
problems via fine-tuning pretrained ImageNet CNNs: the original
three-class problem and two binary classifiers (i.e., melanoma ver-
sus both other lesion classes and seborrheic carcinoma versus both
other lesion classes). Perez et al. [7] conducts a comparison study
between two fusion strategies for melanoma classification: select-
ing the classifiers at random (i.e., among 125 models over 9 CNNs
architectures), and selecting the classifiers depending on their per-
formance on a validation dataset.

To summarize, most of the existing approaches use static fusion
approaches for skin lesion analysis. However, as discussed in Sec-
tion 1, since the skin lesion datasets are usually limited and statis-
tically biased [2–4], it is necessary to enable active fusion in such
problem. To the best of our knowledge, our work is the first to
design, apply and evaluate active fusion approaches in the skin
lesion classification problems.

2.3. Cost-sensitive machine learning

A variety of cost-sensitive machine learning approaches have
been proposed to tackle the class imbalance issue in pattern clas-
sification and learning problems. Mollineda et al. [31], a compre-
hensive study on the class imbalance issue, divides most of the
cost-sensitive machine learning approaches into two categories:
the data-level and the algorithmic-level. The data-level approaches
usually manipulate the data distribution via over-sampling the
samples of the minority classes or under-sampling the samples
of the majority classes. For instance, SMOTE [32] is an over-
sampling technique proposed to address the over-fitting problem
via synthesizing more of the samples of the minority classes. Sev-
eral variants of the SMOTE approach [33–36] are also proposed to
solve this issue.

The algorithmic-level approaches directly re-design the
machine learning algorithms to minimize a customizable loss func-
tion, that enables the ‘‘cost-sensitive” feature, of the classifier on
certain dataset (e.g., improving the sensitivity of the classifier
towards minority classes). For instance, Importance-weighted risk
minimization has been proposed in many machine learning algo-
rithms and implementations, such as LibSVM [37], weighted cross
entropy loss functions [38,39]. However, as pointed out by [40], the
weighted cross entropy is only more effective in the early stage
(e.g., a few epochs) of training CNNs, and its impact diminishes
quickly as the number of epochs successively increasing. Therefore,
it calls for alternative solutions, compared with directly applying
weighted cross entropy, for the fusion of CNNs for imbalanced or
cost-sensitive datasets. Zhang et al. [41] proposes an extreme
learning machine (ELM) based evolutionary cost-sensitive classifi-
cation approach, where the cost matrix would be automatically
identified given a specific task (i.e., which error cost more). Iran-
mehr et al. [42] extends the standard loss function of support vec-
tor machine (SVM) to consider both the class imbalance (i.e., the
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cost) and the classification loss. Khan et al. [43] proposes a cost-
sensitive deep neural network framework that could automatically
learn the ‘‘cost-sensitive” feature representations for both the
majority and minority classes, where during the training phase,
the proposed framework would perform a joint-optimization on
the class-dependent costs and the deep neural network parame-
ters. In this work, we enable the ‘‘cost-sensitive” feature in the pro-
cess of multi-classifier fusion, and employ it in the skin lesion
classification problem.

3. Methodology

3.1. Multi-classifier fusion

In multi-classifier fusion, we define a classification space, as
shown in Fig. 1, where there are m classes and k classifiers. Let
M ¼ fM1;M2; . . . ;Mkg denote the set of base classifiers and
C ¼ fC1;C2; . . . ;Cmg denote the set of classes. Let pm

kj denote the
posterior probability of given sample j identified by classifier Mk

as belonging to class Cm, where Pkj ¼ fp1
kj; p

2
kj; . . . ; p

m
kjg andPm

l¼1p
l
kj ¼ 1. Hence, all the posterior probabilities form a k�m

decision matrix as follows:

Pj ¼

p1
1j p2

1j � � � pm
1j

p1
2j p2

2j � � � pm
2j

..

. ..
. . .

. ..
.

p1
kj p2

kj � � � pm
kj

2
66666664

3
77777775

ð1Þ

Since the importance of different classifiers might be different,
we assign a wight wi to the decision vector (i.e., posterior probabil-
ities vector) of each classifier Ci, where i 2 f1;2; . . . ; kg. Let PmðjÞ
denote the sum of the posterior probabilities, that sample j belong-
ing to class m, of all the classifiers. Then, we have

PmðjÞ ¼
Xk

i¼1

wi � pm
ij ð2Þ

The final decision (i.e., class) DðjÞ of sample j is determined by
the maximum posterior probabilities sum:

DðjÞ ¼ max
i

PiðjÞ; i 2 f1;2; . . . ;mg ð3Þ

Conventional multi-classifier fusion approaches either use the
same weight for all the classifiers (i.e., average fusion) or use static
weights that will not be changed after its initial assignment during
the training phase. As illustrated in Fig. 1, our weights (i.e.,
wk ¼ OkþSk

2 ) contains two components: (i) the objective weight Ok

that is static and determined by the prior knowledge obtained
through the training phase (Section 3.3ii) the subjective weight
Sk that is dynamic and calculated by the posterior knowledge
obtained through the testing phase (Section 3.4). For different
applications, we can assign different weights toward Ok and Sk.
To be simplified and for demonstration purposes, in this work,
we assign the same weight, i.e., 0:5, on both Ok and Sk, while com-
bining them together.

3.2. Cost-sensitive problem formulation

As discussed in Section 1, given a sample, different outputs (i.e.,
the correct prediction or all kinds of errors) of a classifier should
result in different costs. For instance, misclassifying a more severe
lesion to a benign or less severe lesion should have relative higher
cost. Let cpq denote the cost of classifying an instance belonging to
class p into class q. Then, we obtain a cost matrix as follows:



Fig. 1. The Overview of CS-AF Framework.
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CM ¼

c11 c12 � � � c1m
c21 c22 � � � c2m

..

. ..
. . .

. ..
.

cm1 cm2 � � � cmm

2
66666664

3
77777775

ð4Þ

Let W ¼ fw1;w2; . . . ;wkg be a fusion weight vector, and W be
the fusion weight vector space, where W 2 W. The goal of cost-
sensitive multi-classifier fusion is to find the W� 2 W, that can
minimize the average cost of the fusion approach’s outcomes over
all the testing samples.

3.2.1. Examples of the design of cost matrix
In this section, we would like to show examples of the design of

cost matrices. To demonstrate the ‘‘cost-sensitive” feature in our
CS-AF framework, here we design two different cost matrices for
the application of skin lesion analysis. There are eight classes, i.e.,
melanoma (MEL), squamous cell carcinoma (SCC), basal cell carci-
noma (BCC), melanocytic nevus (NV), actinic keratosis (AK), der-
matofibroma (DF), vascular lesion (VASC), benign keratosis (BKL)
in our skin lesion classification problem, where MEL, SCC and
BCC are cancerous, and the rest are benign. We would like to
demonstrate our work by designing two cost matrices: Cost Matrix
A, which emphasizes on the identification of cancerous skin lesions
(i.e., the cost of misclassifying a cancerous skin lesion is much
more than a benign one); and Cost Matrix B (the opposite of Cost
Matrix A), which emphasizes on the identification of benign skin
lesions.

We propose to follow the principles below to design our exper-
imental cost matrices:

� All the costs should be positive, since it will be item-wise mul-
tiplied with the confusion matrix. As such, it will not result in
negative values in the cost-sensitive confusion matrix.

� The cost of the correct predictions should depend on the rela-
tive severeness of the corresponding disease. For instance, it
should be more valuable (i.e., less cost) to classify a more severe
disease (i.e., melanoma) correctly. To figure out the relative
severeness relationships among all eight skin lesion classes
and design our cost matrix (i.e., Cost Matrix A) in a better
way, we referred to the American Academy of Dermatology
Association’s guidance [44]. To be simplified and enable the
evaluation of our work, based on the reference, we heuristically
ordered the severeness of the 8 skin lesion classes (from the
most severe one to the least severe one) as follows: melanoma
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(MEL), squamous cell carcinoma (SCC), basal cell carcinoma
(BCC), melanocytic nevus (NV), actinic keratosis (AK), der-
matofibroma (DF), vascular lesion (VASC), benign keratosis
(BKL). It is worth noting that the absolute cost (i.e., quantitative
evaluation) for each disease is non-trivial to decide, but the rel-
ative severeness (i.e., qualitative evaluation) is able to
determine.

� The relative costs of different incorrect predictions should be
based on their relative severeness. For instance, misclassifying
melanoma (i.e., a deadly cancerous skin lesion) as benign ker-
atosis should result in much more cost than the opposite
scenario.

� The maximum cost of correct predictions should be no more
than the minimum cost of incorrect predictions.

Fig. 4 illustrates the Cost Matrix A and Cost Matrix B that we
utilized to evaluate our framework in the experimental evaluation.
Let us take the design of Cost Matrix A as an example. Firstly, we
assign the cost of correct prediction of each skin lesion class, i.e.,
cii; i ¼ 1;2; . . . ;m (as defined in Section 3.2), according to the rela-
tive disease severeness, where predicting a more severe skin lesion
class correctly should result in less cost. For instance, we set the
cost of correct prediction of MEL (i.e., the most severe one) as 1,
and the cost of correct prediction of BKL (i.e., the least severe
one) as 8. Secondly, to calculate the relative cost of each incorrect
prediction, we follow the equation below:

cij ¼ cjj
cii

� �2

; i– j ð5Þ

where as defined in Section 3.2, cij denote the cost of classifying an
instance belonging to class i into class j. For instance, if the cost of
correct prediction of MEL is 1 and the cost of correct prediction of
BKL is 8, the cost of misclassifying an instance belonging to MEL

into BKL would be ð81Þ
2 ¼ 64. Last but not least, to ensure the cost

of correct predictions are always no more than the cost of incorrect
predictions, without loss of generality, we normalized the costs of
misclassifications to integers between 16 and 200, using min–max
scaling. Fig. 4a shows the final result of our designed Cost Matrix A.

To evaluate our framework under different cost matrices, we
also designed a Cost Matrix B (as shown in Fig. 4b), that empha-
sizes on benign lesions (i.e., the cost of misclassifying a benign
lesion is muchmore than a cancerous lesion). Cost Matrix B follows
the same design steps as Cost Matrix A, other than considering an
exactly reverse order of the severeness. For instance, in the design
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of Cost Matrix B, melanoma became the ‘‘least severe” one while
benign keratosis became the ‘‘most severe” one.
3.3. Computing the objective weights

The objective weights are designed according to the classifiers’
reliability to recognize the particular skin lesions, which is deter-
mined by the prior knowledge obtained through the training
phase. In the training phase, we separate all the labelled data into
two parts: training dataset and validation dataset. The training
dataset will be used to train/build the base classifiers, while the
validation dataset will be used to evaluate the performance of each
base classifier. The reliability of each base classifier depends on its
performance on the validation dataset. Therefore, in order to get an
effective and unbiased reliability of each base classifier, the train-
ing dataset and validation dataset cannot have overlapped data.
Specifically, as shown in Fig. 2, computing the objective weights
in our framework contains three steps:

� Classifier build. We prepare a set of base classifiers, where all
the classifiers might have different CNN architectures, use different
size of the training data, or use different subset or classes distribu-
tions of the training data. In this step, we trained 96 base classi-
fiers, more details are introduced in Section 4.2.

� Reliability validation. Let ri denote the reliability of a base
classifier Mi, that is designed to describe the average recognition
performance of the classifier on the validation data. Higher accu-
racy and less error on the validation data usually means higher
reliability. Hence, we use the confusion matrix result of each base
classifier on the same validation dataset as its reliability, where a
confusion matrix [45] is a table that is often used to describe the
performance of a classifier on a set of validation data for which
the true values are known. It allows easy identification of confu-
sion between classes, e.g., one class is commonly mislabeled as
the other. Many performance measures could be computed from
the confusion matrix (e.g., F-scores). As such, we use rpqi to denote
the probability of a base classifier Mi classifying an instance
belonging to class p into class q.

� Cost-sensitive adjustment. As described in Section 3.2, we
would like to enable the ‘‘cost-sensitive” feature in the design of
our objective weights. As shown in Fig. 3, for each classifier Mi,
we use an element-wise multiplication between its reliability ri
(confusion matrix) and the customized cost matrix (Section 3.2)
to formulate a cost-sensitive confusion matrix, where all the
results/errors in the confusion matrix have been adjusted based
on the cost matrix. Then, we use the micro-average F1-score [46]
of the cost-sensitive confusion matrix to define the objective
weight of each base classifier, and all the object weights are auto-
matically normalized to ð0;1�.
3.4. Computing the subjective weights

The subjective weights are designed according to the relative
confidence of the classifiers while recognizing a specific previously
‘‘unseen” image (i.e., individuality), which are calculated by the
posterior knowledge obtained through the testing phase. The indi-
viduality of each base classifier is dynamically computed from its
discriminant confidence towards each previously ‘‘unseen” testing
data, to capture the posterior knowledge that a base classifier can-
not obtain from the training and validation datasets. Specifically, as
shown in Fig. 5, computing the subjective weights in our frame-
work contains three steps:

� Sample evaluating/testing. Each testing data is evaluated/
tested through all the classifiers to obtain the corresponding deci-
sion vectors (i.e., the soft labels).
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� Individuality calculation. We consider the individuality of a
classifier as its relative class discriminative power regarding a
given testing data. A classifier can easily identify the class of a
given testing data in the testing phase, if its posterior probabilities
of the corresponding decision vector is highly concentrated in one
class, and the misclassification rate would also be low. On the con-
trary, if the distribution of the posterior probabilities is close to
uniform, the classifier shows its difficulty in discriminating the
class of the given testing data. Also, different classifiers would pre-
sent different distribution of the posterior probabilities in the deci-
sion vectors while testing the same testing data. Hence, we define
the individuality ik of a classifier Mk using the posterior probabili-
ties distribution as follows:

ik ¼ 1
m� 1

Xm
l¼1

ðp�
kj � pl

kjÞ ¼
m � p�

kj � 1
m� 1

ð6Þ

where p�
kj is the largest posterior probability value in Pkj. Based on

Eq. (6), the individuality of each base classifier on a given testing
data depends on its output probability of the most probable class.
For each testing data, the base classifier that has the highest output
probability of the most probable class achieves the highest
individuality.

� Normalization. Since the subjective weights are relative val-
ues among all the base classifiers, we normalize each individuality
ik to the subjective weight Sk 2 ½0;1� as follows:

Sk ¼ ik � imin

imax � imin
ð7Þ

where imin ¼ min
j21;2;...;k

ij (i.e., the minimum individuality among all

base classifiers), and imax ¼ max
j21;2;...;k

ij (i.e., the maximum individuality

among all base classifiers).

4. Experimental evaluation

We conducted our experiments on the ISIC Challenge 2019
dataset [47,48,3] and utilized 12 CNN architectures to evaluate
the performance of our proposed CS-AF framework. Two examples
of cost matrices, that emphasize on different skin lesion classes
(i.e., cancerous lesion classes vs. benign lesion classes), have been
designed to evaluate the effectiveness of the ‘‘cost-sensitive” fea-
ture of our proposed CS-AF framework. Furthermore, extensive
comparisons have been made among two static fusion approaches
(i.e., Max Voting Fusion and Average Fusion), two state-of-the-art
active fusion approaches (i.e., DES-MI [6] and MCE-DW [5]), AF
(i.e., active fusion without the ‘‘cost-sensitive” feature) and our
CS-AF framework. The presented results show that our approach
consistently outperforms both the static and the active fusion
approaches in terms of the overall accuracy and the total cost, is
more adaptive to the customized cost matrices than the other
two active fusion competitors, and consistently better than AF in
terms of the total cost under different conditions.

4.1. Experiment dataset

In our experiments, we utilized the well known ISIC Challenge
2019 dataset [47,48,3]. Since the ground truth of the original test-
ing data was not available, we only employed the original training
data without meta-data in our experimental evaluation. This data-
set (i.e., the original training data of the ISIC Challenge 2019) con-
tains 25,331 images in total, coming from 3 source datasets:
BCN_20000 [47], HAM10000 [48] and MSK [3]. It depicts 8 skin
lesion diseases (i.e., 8 classes): melanoma (MEL, 4,522 images),
melanocytic nevus (NV, 12,875 images), basal cell carcinoma



Fig. 2. The calculation of objective weights.

Fig. 3. The calculation of cost-sensitive confusion matrix.

Fig. 4. Two examples of cost matrices: (a) Cost Matrix A (emphasizing on cancerous skin lesions); (b) Cost Matrix B (emphasizing on benign skin lesions).
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(BCC, 3,323 images), actinic keratosis (AK, 867 images), benign ker-
atosis (BKL, 2624 images), dermatofibroma (DF, 239 images), vas-
cular lesion (VASC, 253 images) and squamous cell carcinoma
(SCC, 628 images). We split the entire 25,331 images into training
(80%), validation (5%) and testing (15%) datasets.

To evaluate the performance of our proposed CS-AF framework
using the base classifiers that are trained from the datasets with
different classes distributions, we designed 4 training datasets that
have different classes distributions. For instance, one training data-
211
set could have balanced classes distribution, and the other training
datasets could have unbalanced classes distributions in different
ways. The details (i.e., classes distributions) of each training data-
set are shown in Table 1 and described as below:

� Dist-1: This training dataset follows the classes distribution of
the original training dataset of the ISIC Challenge 2019 dataset.

� Dist-2: This training dataset contains evenly distributed num-
ber of samples for all classes.



Fig. 5. The calculation of subjective weights.

Table 1
The number (ratio) of samples of each skin lesion classes of different split training datasets.

Skin Lesion Dist-1 Dist-2 Dist-3 Dist-4

MEL 3,662 (18.1%) 2,509 (12.4%) 5,052 (22.5%) 604 (2.7%)
SCC 502 (2.5%) 2,510 (12.4%) 4,331 (19.3%) 1,200 (5.4%)
BCC 2,670 (13.2%) 2,494 (12.4%) 3,781 (16.9%) 1,812 (8.1%)
NV 10,235 (50.5%) 2,512 (12.4%) 3,032 (13.5%) 2,529 (11.3%)
AK 705 (3.5%) 2,564 (12.5%) 2,463 (11.0%) 3,150 (14.1%)
DF 188 (1%) 2,444 (12.3%) 1,871 (8.3%) 3,702 (16.9%)

VASC 194 (1%) 2,522 (12.5%) 1,262 (5.6%) 4,334 (19.3%)
BKL 2,099 (10.4%) 2,612 (13.0%) 626 (2.8%) 5,056 (22.6%)
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� Dist-3: This training dataset contains more samples for cancer-
ous lesion classes, and less samples for benign lesion classes.

� Dist-4: This training dataset contains less samples for cancerous
lesion classes, and more samples for benign lesion classes (i.e.,
the opposite order of classes distributions as in Dist-3).

To generate different training datasets satisfying different
classes distributions described above, we utilized data augmenta-
tion techniques to generate more images for the skin lesion classes
lacking of images, and randomly sampled smaller portions from
the classes with superfluous images. The main data augmentation
techniques utilized are rotation (for 45, 90, 135, 180, 225, 270 and
315 degrees, respectively), horizontal flip or the combination of
both. We also utilized the same strategy to generate the validation
and testing datasets, to ensure the numbers of samples of all
classes are equal, where there are approximate 200 samples of
each class in the validation dataset, and approximate 500 samples
of each class in the testing dataset.

In addition, to evaluate the performance of our proposed CS-AF
framework using the base classifiers that are trained from different
subsets of the training dataset, for each of those four training data-
sets that have different classes distributions, we randomly select
70% of its data to produce another sub-dataset, namely, Sub-70.
Therefore, in our experimental evaluation, there are 8 different
split training datasets in total (i.e., Dist-1, Dist-1 Sub-70, Dist-2,
Dist-2 Sub-70, Dist-3, Dist-3 Sub-70, Dist-4 and Dist-4 Sub-70).
4.2. Base classifiers preparation

We chose 12 different CNN architectures to evaluate the fusion
approaches performance. These 12 CNN architectures were popu-
lar and have been shown to have good transfer learning perfor-
mance on the skin lesion analysis [7]. All the 12 CNN
architectures were trained on the 8 different split training datasets
as we mentioned in the previous section. Therefore, we obtained a
pool of 12� 8 ¼ 96 base classifiers, the corresponding accuracy of
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each base classifier is shown in Table 2. Notably, different CNN
architecture requires different size of input images as below.

� 331�331: PNASNet-5-Large, NASNet-A-Large.
� 320�320: ResNeXt101-32�16d.
� 299�299: Xception, Inception-V4, Inception-V3,
InceptionResNet-V2.

� 224�224: SENet154, Dual Path Net-107, SE-ResneXt101-
32�4d, EfficientNet-b7, ResNet152.

It is also worth noting that in our experiments, we treat CNNs
with different size of input images equally during the weight
assignment, since our objective weight assignment depends on
the overall performance of each base classifier evaluated on the
given validation dataset, which already considered the specifica-
tion differences of different CNNs.

All the base classifiers were fine-tuned by stochastic gradient
decent (SGD) with learning rate 10�3 and momentum 0.9. The
learning rate degraded in 20 epochs by 0.1. We stopped the train-
ing process either after 40 epochs or while the validation accuracy
was failed to improve for 7 consecutive epochs. Our experiments
were implemented using Pytorch, running on a server with 4
GTX 1080Ti 11 GB GPUs. To keep the same batch size 32 in each
evaluation, and due to the memory constraint of single GPU, cer-
tain CNN architectures were trained with more GPUs:

� 2 GPUs: SENet154, EfficientNet-b7, Dual Path Net-107.
� 4 GPUs: PNASNet-5-Large, ResNeXt101-32�16d, NASNet-A-
Large.

4.3. Experimental procedure

As described in Section 4.2, we have prepared 96 base classi-
fiers. To evaluate the effectiveness of our active fusion approach
extensively, each time we perform the fusion approaches on a ran-
domly selected subset (i.e., N classifiers) of those 96 base classi-
fiers, where N ¼ 8;16;24;32;40;48;56;64;72;80;88;96. For each



Table 2
The performance (accuracy in %) of the base classifiers of twelve CNN architectures trained on 8 different split training datasets.

CNN Architectures Dist-1 Dist-1 Sub-70 Dist-2 Dist-2 Sub-70 Dist-3 Dist-3 Sub-70 Dist-4 Dist-4 Sub-70

PNASNet-5-Large [49] 78.48 76.53 81.14 80.73 77.01 75.21 78.76 75.34
NASNet-A-Large [50] 78.35 76.71 79.80 78.31 76.00 75.36 76.12 74.32

ResNeXt101-32�16d [51] 79.47 76.96 83.09 80.08 80.18 77.14 79.47 77.47
SENet154 [52] 80.31 77.72 81.19 76.33 79.04 74.04 78.76 76.43

Dual Path Net-107 [53] 76.61 74.51 79.10 77.92 76.07 70.88 77.24 74.80
Xception [54] 74.63 74.07 78.53 75.19 76.46 72.93 75.82 74.30

Inception-V4 [55] 76.76 74.22 80.11 77.45 77.09 75.37 75.89 74.10
InceptionResNet-V2 [55] 77.58 76.64 70.81 77.39 77.77 76.12 76.48 74.01

SE-ResneXt101-32�4d [52] 77.45 77.21 79.87 78.41 75.38 74.68 75.60 74.33
ResNet152 [56] 75.69 73.23 79.27 75.01 76.00 74.96 75.77 74.45

Inception-V3 [57] 75.16 73.82 79.52 78.83 73.69 72.41 75.62 72.07
EfficientNet-b7 [58] 67.31 63.07 74.10 71.28 71.81 68.75 71.48 67.37
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N, we repeat the random selection experiments for 100 times, and
use the averaged performance as the final results.

4.4. Evaluate the effectiveness of CS-AF

To demonstrate the effectiveness of our approach, a comparison
between two CS-AF implementations (using two different cost
matrices to compute the objective weights) and five other fusion
approaches has been conducted. The competitors are:

� Max Voting Fusion is a static approach, where the predictions
are combined from multiple base classifiers and only the pre-
dicted class with the highest votes will be included in the final
prediction.

� Average Fusion is another static approach, where it averages the
decision vectors of multiple base classifiers and uses the aver-
aged decision vector to make the final prediction.

� DES-MI [6] filters the base classifiers by assigning weight to
each of them, where the weight is based on the performance
of k-nearest neighbors in validation set regarding the current
test sample.

� MCE-DW [5] determines the classifier reliability by fuzzy set
theory, and combines decision credibility of each test sample
to make the final decision.

� AF is a baseline active fusion approach by removing the cost-
sensitive adjustment step from CS-AF while calculating the
objective weights.

� CS-AF (Cost Matrix A) is our approach while computing its
objective weights using Cost Matrix A (Section 3.2.1).

� CS-AF (Cost Matrix B) is our approach while computing its
objective weights using Cost Matrix B (Section 3.2.1).

Given a competitor fusion approach, we evaluate its effective-
ness in terms of (i) its averaged accuracy on our testing dataset
(as shown in Fig. 6a), ii) its total cost on our testing dataset speci-
Fig. 6. Evaluate the Effectiveness of CS-AF. (a) The overall accuracy on our testing datase
Matrix B.
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fied by Cost Matrix A (as shown in Fig. 6b), and Cost Matrix B (as
shown in Fig. 6c). The total costs are calculated by the sum of
the item-wise product between the confusion matrix resulted from
our testing dataset and the specified cost matrix. Better fusion
approach usually leads to higher accuracy on the testing dataset
and lower total cost specified by certain cost matrix. From the
results illustrated in Fig. 6, we obtain the observations below:

� Compared with the best performed base classifier, ResNeXt101-
32�16d, as shown in Table 2, our two implementations of CS-AF
and AF consistently achieve over 2%-5% higher accuracy on the
same testing dataset.

� For all the fusion approaches, as more base classifiers involved,
the accuracy tends to increase and the total cost tends to
decrease.

� As illustrated in Fig. 6a, in terms of the accuracy, our two imple-
mentations of CS-AF and AF consistently outperform the static
fusion approaches (i.e., Max Voting and Average). Compared
with the active fusion competitors (i.e., MCE-DW and DES-
MI), our CS-AF (Cost Matrix B) consistently obtains the highest
accuracy.

� As illustrated in Fig. 6b and Fig. 6c, in terms of the total cost, CS-
AF consistently outperforms the other fusion competitors (i.e.,
Max Voting, Average MCE-DW, DES-MI and AF). For instance,
while calculating the total cost using Cost Matrix A, CS-AF (Cost
Matrix A) always achieves the lowest total cost, and while cal-
culating the total cost using Cost Matrix B, CS-AF (Cost Matrix
B) always obtains the lowest total cost. Thus, it demonstrates
that our proposed cost-sensitive active fusion approach could
adapt to different customized cost matrices and is optimized
to achieve the lowest total cost.

� DES-MI is more sensitive to the number of base classifiers. For
instance, it always has the worst performance with few classi-
fiers involved, and finally has close performance with our CS-
AF as shown in Fig. 6. This is because in the implementation
t; (b) The total cost calculated by Cost Matrix A; (c) The total cost calculated by Cost



TP þ FN

Fig. 7. The sensitivity results of each single class of CS-AF (Cost Matrix A) and CS-AF (Cost Matrix B).

Fig. 8. The specificity results of each single class of CS-AF (Cost Matrix A) and CS-AF (Cost Matrix B).
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of DES-MI, it only remains the most confident (i.e., top 40%)
base classifiers among all given base classifiers. So, there are
only very few base classifiers to be considered to make the final
decision while the number of given base classifiers is low.

4.5. Analyze the ‘‘Cost-sensitive” of CS-AF

As discussed above, our proposed CS-AF could adapt to different
cost matrices and is optimized to achieve the lowest total cost
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under a specified cost matrix, namely ‘‘cost-sensitive”. In this sec-
tion, we would like to analyze how such ‘‘cost-sensitive”, while
using certain customized cost matrices, influences the perfor-
mance of CS-AF on certain single skin lesion classes, thus reducing
the total cost. We evaluate single class performances using sensi-
tivity and specificity, defined as below:

sensitiv ity ¼ TP ð8Þ
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where TP denotes the number of true positives and FN denotes the
number of false negatives.

specificity ¼ TN
TN þ FP

ð9Þ

where TN denotes the number of true negatives and FP denotes the
number of false positives.

Fig. 7 and Fig. 8 illustrate the sensitivity and specificity results
of each single class of CS-AF (Cost Matrix A), CS-AF (Cost Matrix
B) and all the other competitors, respectively. We can observe that:

� Compared with CS-AF (Cost Matrix B), CS-AF (Cost Matrix A)
tends to achieve higher sensitivity on more severe cancerous
skin lesion classes (i.e., melanoma, squamous cell carcinoma
and basal cell carcinoma), and lower sensitivity on less severe
benign skin lesion classes (i.e., benign keratosis, vascular lesion,
dermatofibroma, actinic keratosis and melanocytic nevus).

� Compared with CS-AF (Cost Matrix A), CS-AF (Cost Matrix B)
tends to achieve higher specificity on those more severe cancer-
ous skin lesion classes, and lower specificity on those less sev-
ere benign skin lesion classes.

� Compared with the other competitors, our approaches, CS-AF
(Cost Matrix A) obtains the highest sensitivity on the most sev-
ere cancerous skin lesion (melanoma), and CS-AF (Cost Matrix
B) consistently obtains the highest sensitivity on the most
benign skin lesion class (benign keratosis).

� Compared with the other competitors, our approaches, CS-AF
(Cost Matrix B) consistently achieves the highest specificity on
melanoma, and CS-AF (Cost Matrix A) consistently achieves
the highest specificity on benign keratosis.

As described in Section 3.2.1, Cost Matrix A emphasizes on the
cancerous skin lesions (i.e., the cost of misclassifyinga a cancerous
skin lesion is much more than a benign skin lesion), while Cost
Matrix B emphasizes on the benign lesions (i.e., the cost of misclas-
sifyinga a benign skin lesion is much more than a cancerous skin
lesion). While using Cost Matrix A to compute the objective
weights of our CS-AF implementation (i.e., CS-AF (Cost Matrix
A)), it tends to increase the TP and FP of cancerous skin lesion
classes and decrease the FN and TN of benign skin lesion classes,
thus resulting in higher sensitivity and lower specificity for cancer-
ous skin lesion classes. CS-AF (Cost Matrix B) also works in such
way accordingly. Therefore, the Fig. 7 and Fig. 8 demonstrate that
our proposed CS-AF is ‘‘cost-sensitive”, where its performance on
certain single skin lesion classes could be adapted to certain cus-
tomized cost matrices.
2 The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements
either expressed or implied, of the United States Special Operations Command.
5. Conclusion

In this paper, we propose CS-AF, a cost-sensitive multi-classifier
active fusion framework for skin lesion classification, where we
define two types of weights: the objective weights that are
designed according to the classifiers’ reliability to recognize the
particular skin lesions, and the subjective weights that are
designed according to the relative confidence of the classifiers
while recognizing a specific previously ”unseen” image (i.e., indi-
viduality). We also enable the ‘‘cost-sensitive” feature in our
framework, via incorporating a customizable cost matrix in the
design of the objective weights. In the experimental evaluation,
we trained 96 classifiers of 12 CNN architectures as the base clas-
sifiers, and compared our CS-AF framework with two static fusion
approaches (i.e., Max Voting Fusion and Average Fusion), two
active fusion competitors (i.e., DES-MI [6] and MCE-DW [5]), and
a baseline active fusion approach, AF. Our experimental results
show that our CS-AF framework consistently outperforms the sta-
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tic and active fusion competitors in terms of accuracy, and always
achieves the lowest total cost. We also demonstrated our ‘‘cost-
sensitive” feature by using two examples of cost matrices. In the
future work, we plan to (i) investigate and incorporate other met-
rics (i.e., other than F1-score) in the design of the objective
weights; (ii) design learning-based approach to determine the sub-
jective weights; and (iii) employ and evaluate our CS-AF frame-
work in other medicine-related applications.
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