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Abstract—Community detection is of great importance for online social network analysis. The volume, variety and velocity of data

generated by today’s online social networks are advancing the way researchers analyze those networks. For instance, real-world

networks, such as Facebook, LinkedIn and Twitter, are inherently growing rapidly and expanding aggressively over time. However,

most of the studies so far have been focusing on detecting communities on the static networks. It is computationally expensive to

directly employ a well-studied static algorithm repeatedly on the network snapshots of the dynamic networks. We propose DynaMo, a

novel modularity-based dynamic community detection algorithm, aiming to detect communities of dynamic networks as effective as

repeatedly applying static algorithms but in a more efficient way. DynaMo is an adaptive and incremental algorithm, which is designed

for incrementally maximizing the modularity gain while updating the community structure of dynamic networks. In the experimental

evaluation, a comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic algorithms. Extensive

experiments have been conducted on 6 real-world networks and 10,000 synthetic networks. Our results show that DynaMo

outperforms all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain

algorithm.

Index Terms—Community detection, dynamic network analysis, modularity, incremental approach

Ç

1 INTRODUCTION

WITH the advance of online social network analysis, more
and more real-world systems, such as social networks

[1], collaboration relationships [2], recommendation systems
[3] and intrusion detection system [4], [5], are represented and
analyzed as networks, where the vertices represent certain
objects and the edges represent the relationships or connec-
tions between the objects. Most social networks have been
shown to present certain community structures [6], where ver-
tices are densely connected within communities and sparsely
connected between communities. Community detection is one
of themost important and fundamental problem in the field of
graphmining, network science and social network analysis.

Detecting community structure is of great challenge, and
most of the recent studies are proposed to detect communities
in the static networks, such as spectral clustering [7], label
propagation [8], modularity optimization [9], and k-clique
communities [10]. However, real-world networks, especially
most of the online social networks, are not static.Most popular
online social networks (e.g., Facebook, LinkedIn and Twitter)
are de facto growing rapidly and expanding aggressively in
terms of either the size or the complexity over time. For
instance, in Facebook network, the updating of its community
structure could be simply caused by new users joining in, old
users leaving, or certain users connecting (i.e., friend) or

disconnecting (i.e., unfriend) with the other users. Facebook
announced that it had 1.52 billion daily active users in the
fourth quarter of 2018 [11], which shows a 9 percent increase
over the same period of the previous year, and 4 million likes
generated every minute as of January 2019 [12]. Hence, it is
rather important and impending to enable community detec-
tion in such dynamic networks.

Designing an effective and efficient algorithm to detect
communities in dynamic networks is highly difficult. First, an
efficient algorithm should update the communities adaptively
and incrementally depending on the changes of the dynamic
networks, and avoid redundant and repetitive computations.
Second, it is hard to design a dynamic algorithm that performs
as effective as the static algorithms by only observing the his-
torical community structures and the incremental changes of
the dynamic networks. Third, it is still quite open about how
to categorize the incremental changes of dynamic networks,
and how to assess the influence of different types of the incre-
mental changes on the community structure updates, which is
rather important to design an effective and efficient dynamic
algorithm.

A few algorithms have been proposed to detect communi-
ties in dynamic networks [13], [14], [15], [16], [17], [18], [19],
[20], [21]. An intuitive way to detect communities in dynamic
networks is to slice the network into small snapshots based
on the timestamps, and directly employ well-studied static
algorithms repeatedly on each network snapshot. However,
these algorithms [13], [14] usually are computational expen-
sive, since they compute the current community structures
completely independent from the historical information
(i.e., the previous community structures), especially when the
dynamic network changes rapidly and the time interval
between two consecutive network snapshots are extremely
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small. Another way to update the communities is using not
only the current network changes but also the previous com-
munity structures. These algorithms [15], [16], [17], [18], [19],
[20], [21] adaptively and incrementally detect communities in
dynamic networks, without re-executing any static algorithms
on each entire network snapshot. Those algorithms are usually
more efficient than repeatedly applying static algorithms on
network snapshots. However, most of those algorithms are
still not practical enough to be directly used to analyze the
real-world networks. For instance, some algorithms [15], [18]
only considers vertices/edges additions, while vertices/edges
deletions happen quite often in online social networks (e.g.,
“unfriend” in Facebook). Some algorithms [15], [16], [18], [20]
only consider unweighted networks, which are not applicable
for weighted networks. Furthermore, some algorithms [21],
[22], [23] need certain prior information about the community
structures (e.g., the number of communities, the ratio of verti-
ces in overlapped communities) or need certain predefined
parameterswhich are not available in practice.

We present DynaMo, a novel modularity-based dynamic
community detection algorithm, aiming to detect non-over-
lapped communities of dynamic networks. DynaMo is an
adaptive and incremental algorithm designed for maximizing
the modularity gain while updating the community structure
of dynamic networks. To update the community structures
efficiently, we model the dynamic network as a sequence of
incremental network changes. We propose 6 types of incre-
mental network changes: (a) intra-community edge addition/
weight increase, (b) cross-community edge addition/weight
increase, (c) intra-community edge deletion/weight decrease,
(d) cross-community edge deletion/weight decrease, (e) vertex
addition, and (f) vertex deletion. For each incremental network
change,we design an operation tomaximize themodularity.

In the experimental evaluation, a comprehensive com-
parison has been made among DynaMo, Louvain (static)
[24] and 5 dynamic algorithms (i.e., QCA [15], Batch [20],
GreMod [16], LBTR-LR [18] and LBTR-SVM [18]). Extensive
experiments have been conducted on 6 large-scale real-
world networks and 10,000 synthetic networks. Our results
show that DynaMo consistently outperforms all the other 5
dynamic algorithms in terms of the effectiveness, and is 2 to
5 times (by average) faster than Louvain algorithm. To sum-
marize, our work has the following contributions:

� We present a novel, effective and efficient modular-
ity-based dynamic community detection algorithm,
DynaMo, capable of detecting non-overlapped com-
munities in real-world dynamic networks.

� We present the theoretical analysis to showwhy/how
DynaMo couldmaximize themodularity,while avoid-
ing certain redundant and repetitive computations.

� A comprehensive comparison among our algorithm
and the state-of-the-art algorithms has been con-
ducted (Section 5). For the sake of reproducibility
and convenience of future studies about dynamic
community detection, we have released our proto-
type implementation of DynaMo, the experiment
datasets and a collection of the implementations of
the other state-of-the-art algorithms.1

The rest of this paper is organized as follows: Section 2
presents the related work. Section 3 presents the notations,
the concept of dynamic networks and the definition of mod-
ularity, and introduces a baseline static community detec-
tion algorithm (i.e., Louvain algorithm). Section 4 describes
our algorithm design and theoretical analysis. Section 5
presents the experimental evaluation. Section 6 concludes.

2 RELATED WORK

To date, a few dynamic community detection approaches
were proposed [13], [14], [15], [16], [18], [20], [21], [22], [23],
[25], [26], [27], [28], [29], [30]. Rossetti et al. [31], a comprehen-
sive survey on dynamic community detection, divide most of
the algorithms into three categories (i.e., instant-optimal, tem-
poral trade-off and cross-time) in terms of their ability to solve
the community instability and temporal smoothing issue.
However, some approaches in the literature are not belonging
to any of these categories. For instance, some approaches, such
as our proposed algorithm, do not consider the community
instability and temporal smoothing issue, but still aim to detect
communities in dynamic networks effectively and efficiently.
The concept of “cross-time” approaches is also beyond the
scope of this paper. After incorporating the taxonomy of [31],
we consider three categories of related approaches: instant-
optimal, temporal trade-off and incremental approaches (to
replace the “cross-time” in [31]).

The instant-optimal approaches [13], [14], [25] have two
steps: (i) static algorithms are applied on each network snap-
shot independently to detect static communities, (ii) communi-
ties detected on each network snapshot are matched with
communities detected on the previous one. Greene et al. [25]
proposed a general model for tracking communities in
dynamic networks via solving a classic cluster matching prob-
lem on the communities independently detected on consecu-
tive network snapshots. Such approaches take advantage of
existing static algorithms.However, repeatedly applying static
algorithms on all network snapshots of the dynamic networks
is computationally expensive.

The temporal trade-off approaches [21], [22], [23], [26], [27],
[28], [29] incorporate the community detection and tracking via
considering the community structures of the current and his-
torical network snapshots at the same time. Those approaches
aim to maintain the evolution of the community structures of
the dynamic networks, where the community structure (e.g.,
the number of communities, the size of communities) of the
current network snapshot should be similar to that of the previ-
ous one. Tang et al. [26] propose a temporally regularized clus-
tering algorithm to identify evolving groups in dynamic
networks, where they use a metric that attempts to optimize
two objectives: the quality of the current community structure
and the similarity between the current and the previous com-
munity structures. However, most of those approaches, such
as [22], [23], [29], require determining the number of communi-
ties to be detected/tracked in advance, which is rather imprac-
tical for the real-world dynamic networkswhere the number of
communities changes over time.

The incremental approaches [15], [16], [18], [20], [30]
adaptively update the community structures fully based on
the network changes happened during the current snapshot
and the community structure of the previous snapshot. For1. https://github.com/nogrady/dynamo
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instance, GreMod [16] is a rule-based incremental algorithm
that performs the predetermined operations on different
types of the edge addition changes of the dynamic network.
QCA [15] is another rule-based adaptive algorithm that
updates the community structures according to the prede-
fined rules of different types of the incremental changes
(i.e., vertices/edges addition/deletion) on the dynamic net-
work. QCA is also one of the most efficient dynamic com-
munity detection algorithms in the literature. However,
since the rule-based algorithms, such as GreMod [16] and
QCA [15], considers each network change as an indepen-
dent event, they are less efficient when abundant (i.e., a
batch of) network changes appear in the same network
snapshot. Chong et al. [20] propose a batch-based incremen-
tal modularity optimization algorithm that updates the
community structures by initializing all of the new and
changed vertices of the current network snapshot (i.e., the
batch) as singleton communities and using Louvain algo-
rithm to further update the community structures. How-
ever, since their initialization approach, that generates the
intermediate community structure of a batch of network
changes, is rather coarse, it is less efficient to apply Louvain
algorithm on those intermediate community structures.
LBTR [18] is a learning-based framework that uses machine
learning classifiers and historical community structure
information to predict certain vertices’ new community
assignments after each round of network changes. In those
learning-based algorithms, once the models are being
trained, the testing phase could be very efficient. However,
since the supervised nature of the learning-based algo-
rithms, it would be extremely hard to generalize the trained
models. For instance, the models trained on one type of
dynamic networks (e.g., social network) might be less effec-
tive to another type of dynamic networks (e.g., collaboration
network). Furthermore, even for the same dynamic net-
work, the network patterns change over time. Thus, the
models have to be updated periodically, which would be
rather illogical, since the network usually changes rapidly
and updating models is also time consuming.

Our proposed approach, DynaMo, is an adaptive and
incremental algorithm. Compared with rule-based algo-
rithms [15], [16], our approach is capable of processing a set
of network changes as a batch, and redesigns the “rules” by
considering more extreme cases (Section 4.3). Compared
with batch-based algorithms [20], our approach has a more
fine-grained initialization phase (Section 4.3), which could
reduce the computation time dramatically. Compared with
learning-based algorithms [18], our approach is more gener-
alized to real-world networks. In Section 5, we compare
DynaMo with Louvain algorithm and 5 other dynamic algo-
rithms on 6 real-world networks and 10,000 synthetic net-
works, showing that DynaMo consistently outperforms all
the other 5 dynamic algorithms in terms of effectiveness,
and much more efficient than Louvain algorithm.

3 PRELIMINARIES

In this section, we introduce 1) the notations; 2) the dynamic
network model; 3) modularity, to quantify the quality of a
community structure; and 4) Louvain algorithm, a modular-
ity-based static community detection approach.

3.1 Notations

LetG ¼ ðV;EÞ be an undirected weighted network, where V
is a set of vertices (n ¼ jV j), E is a set of undirected
weighted edges (m ¼ jEj), and there could be more than
one edge between a pair of vertices. Let C denote a set of
disjoint communities associated with G, Aij denote the sum
of the weights of all the edges between vertices i and j, ki
denote the sum of the weights of all the edges linked to ver-
tex i, and ci denote the assigned community of vertex i.

3.2 Dynamic Network

Let GðtÞ denote the snapshot of a network at time t, and
~GðtÞ ¼ ð~V ðtÞ;~EðtÞÞ denote the incremental change

from GðtÞ to Gðtþ1Þ (i.e., Gðtþ1Þ ¼ GðtÞ [~GðtÞ), where ~V ðtÞ

and ~EðtÞ are the sets of vertices and edges being changed
during time period ðt; tþ 1�. A dynamic network G is a
sequence of its network snapshots changing over time:
G ¼ fGð0Þ; Gð1Þ; . . . ; GðtÞg.

3.3 Modularity

Modularity [32] is a widely used criteria to evaluate the
quality of given network community structure. Community
structures with high modularity have denser connections
among vertices in the same communities but sparser con-
nections among vertices from different communities. Given
network G ¼ ðV;EÞ, its modularity is defined as follows:

Q ¼ 1
2m

P
i;j2V Aij � kikj

2m

h i
dij ¼ 1

2m

Pc
c2C ac � b2c

2m

� �
; (1)

where ac ¼
P

i;j2c Aij, bc ¼
P

i2c ki and dij equals to 1, if i, j
belong to the same community, otherwise equals to 0.

3.4 Louvain Method for Community Detection

Since themodularity optimization problem is known to beNP-
hard, various heuristic approaches are proposed [9], [33], [34].
Most of the algorithms have been supersededbyLouvain algo-
rithm [24], which attempts tomaximize themodularity using a
greedy optimization approach composed of three steps: (i) Ini-
tialization, where each vertex forms a singleton community. (ii)
Local Modularity Optimization, where each vertex moves from
its own community to its neighbor’s community to maximize
the local modularity gain. If there is no positive modularity
gain, keep the vertex in its original community. Repeat this
step over all vertices multiple times until the modularity gain
is negligible. (iii) Network Compression, where vertices belong-
ing to the same community are aggregated as super vertices
and a newnetwork is built with the super vertices.

Louvain algorithm repeats the last two steps, until the
modularity improvements is negligible. Although the actual
computational complexity of Louvain depends on the input
network, it has an average-case time complexity of OðmÞ
with most of the computational effort spending on the opti-
mization of the first level network (i.e., before creating the
super vertices).

4 DYNAMO: DYNAMIC COMMUNITY DETECTION BY

INCREMENTALLY MAXIMIZING MODULARITY

4.1 Problem Statement

Given a dynamic network G ¼ fGð0Þ; Gð1Þ; . . . ; GðtÞg, where
Gð0Þ is the initial network snapshot, let C ¼ fCð0Þ; Cð1Þ; . . . ;
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CðtÞg denote the list of community structures of the corre-
sponding network snapshots. As illustrated in Fig. 1, we
aim to design an adaptive and incremental algorithm to
detect Cðtþ1Þ, given GðtÞ, CðtÞ and~GðtÞ.

4.2 Methodology Overview

As shown in Fig. 1, our approach has three components:

� Initialization: Use well-studied static algorithms (i.e.,
Louvain [24]) to compute Cð0Þ, which generates a
comparatively accurate community structure of Gð0Þ.

� Adaptive Modularity Maximization (DynaMo): Given

GðtÞ, CðtÞ and ~GðtÞ, update the community structure

ofGðtþ1Þ fromCðtÞ toCðtþ1Þwhilemaximizing themod-
ularity gain, using predesigned strategies that fully
depend on~GðtÞ and CðtÞ. This is the core component
of our framework that relies on fine-grained and theo-
retical-verified strategies (Section 4.3) to maximize the
modularity gainwhilemaintaining the efficiency.

� Refinement: Once the obtained modularity of Cðtþ�Þ is
less than a predefined threshold, useGðtþ�Þ as the new
initial network snapshot to restart our algorithm from
the initialization step. This component prevents our
frame frombeing trapped in the suboptimal solutions.

4.3 The DynaMo Algorithm

DynaMo is an adaptive and incremental algorithm aiming
to maximize the community structure modularity gain
based on the incremental changes of a dynamic network.
We propose a two-step approach: (i) initialize an intermedi-
ate community structure, depending on the incremental net-
work changes and the previous network community
structure, and (ii) repeat the last two steps of Louvain algo-
rithm (Section 3.4) on the intermediate community structure
until the modularity gain is negligible.

Our algorithm benefits community detection in dynamic
networks in three folds. First, in the initialization step,we cate-
gorize the incremental changes into 6 types. For each type of
the incremental change, we design a strategy to initialize its
corresponding intermediate community structure.Most of the
strategies are theoretically verified to incrementally maximize
themodularity,while avoiding redundant and repetitive com-
putations. Second, compared with the original initialization

step of Louvain algorithm, our initialization step takes advan-
tage of the historical information, thus reduces most of the
unnecessary computations happened at Louvain’s first level
network optimization, where Louvain spends most of its
computational effort (Section 3.4). Hence, DynaMo would be
much more efficient than Louvain algorithm while detecting
communities in dynamic networks. Third, in the initialization,
our algorithm could process a set of incremental changes as a
batch,whichmakes the computational complexity of our algo-
rithm less sensitive to the amount of incremental changes and
the frequency of network changes. So, DynaMo can detect
communities while the network changing rapidly.

In this section, 6 different types of the incremental changes
have been defined, where the initialization strategy of each
type is also designed accordingly. Eight propositions are pro-
posed and proved to provide the theoretical guarantees of our
strategies towardsmaximizing themodularity.

4.3.1 Edge Addition/Weight Increase (EA/WI)

In this scenario, an edge ði; j; wijÞ between two existing ver-
tices i and j has been changed to ði; j; wij þ~wÞ, where
wij � 0 and~w > 0. Edge addition is a special case of edge
weight increase, where wij ¼ 0. Depending on the edge
property, we define two sub-scenarios:

Intra-Community EA/WI (ICEA/WI). Vertices i and j belong
to the same community (i.e., ci ¼ cj). According to Proposi-
tion 1, ICEA/WIwill never split i and j into different commu-
nities. And according to Remark 1, sometimes ICEA/WI will
split ci into multiple communities, while keeping i and j in
the same community. Proposition 2 also provides us a conve-
nient tool to decidewhen ci should be bi-split into two smaller
communities (i.e., cp and cq). However, this approach requires
checking all the bi-split combinations of ci, which is time con-
suming, especially when ci is huge. In this case, we propose to
initialize i and j as a two-vertices community, and all the other
vertices in ci as singleton communities.

Proposition 1. Adding an edge or increasing the edge weight
between vertices i and j, that belong to the same community
(ci ¼ cj), will not split i and j into different communities.

See Appendix A.1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2019.2951419, for the proof.

Remark 1. Although our Proposition 1 shows that ICEA/WI
between i and j, where ci ¼ cj, will not split them into dif-
ferent communities, sometimes splitting ci into smaller
communities in other ways (i.e., keeping i and j in the same
community after the splitting) might maximize the modu-
larity. For instance, as shown in Fig. 2, assume all the edge

Fig. 1. The overview of DynaMo.

Fig. 2. Two possible behaviors of the community structure after adding an intra-community edge: (a) Unchanged and (b) splitting to smaller communities.
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weights are 1.0, and the red dash line between i and j is a
newly added intra-community edge. Before adding the
new edge, themodularity of community structure in Fig. 2a
(i.e., 0.561) is higher than that in Fig. 2b (i.e., 0.558). How-
ever, after adding the new edge, the modularity of commu-
nity structure in Fig. 2a (unchanged, i.e., 0.564) becomes
lower than that in Fig. 2b (split, i.e., 0.568). In this case,
although an intra-community edge has been added, split-
ting ci into cp and cq provides higher modularity. Our algo-
rithm carefully considers these “counterintuitive” cases,
which is different from QCA [15], [35], thus, leading our
algorithm to bemore effective (Section 5.5).

Proposition 2. (ICEA/WI Community Bi-split) After ICEA/WI
between vertices i and j, where ci ¼ cj, if a bi-split of ci (i.e.,
cp � ci and cq ¼ cincp) does not exist such that ~w >
ma1�bcpbcq
2bcq�a1 , where a1 ¼ aci � acp � acq , any other bi-split of ci

will not improve the modularity gain comparing with keeping the
community structure unchanged.

See Appendix A.2, available in the online supplemental
material, for the proof.

Cross-Community EA/WI (CCEA/WI). Vertices i and j are
from two different communities (i.e., ci 6¼ cj). CCEA/WI
between i and j leads to three possible operations: (a) keeping
the community structure unchanged; (b) merging ci and cj
into one community; and (c) splitting ck ¼ ci [ cj into other
smaller communities. According to Proposition 3, if ~w is
large enough, merging ci and cj into one community (e.g., ck)
provides highermodularity gain than keeping the community
structure unchanged. However, if ~w is too large (as shown
in Proposition 4), CCEA/WI is equivalent to a two-step pro-
cess: (a) CCEA/WI between i and j (ci 6¼ cj), that results in
merging ci and cj into one community ck (Proposition 3); (b)
ICEA/WI between i and j (ci ¼ cj ¼ ck). Proposition 4 pro-
vides a bi-split condition. However, Proposition 4 also
requires checking all bi-split combinations of ck. Hence, to
deal with CCEA/WI, we propose: (a) if ~w � 1

2

�
a2þ

b2 � 2mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m� a2 � b2Þ2 þ 4ðma2 þ bci

bcj

q
Þ�, where a2 ¼

aci þ acj � ack and b2 ¼ bci
þ bcj

, we keep the community

structure unchanged; (b) otherwise, we employ the same ini-
tialization approach proposed to deal with ICEA/WI on
ck ¼ ci [ cj, where we consider ICEA/WI has happened
between vertices i and j, where ci ¼ cj ¼ ck.

Proposition 3. (CCEA/WI Community Merge) After CCEA/
WI between i and j, where ci 6¼ cj, if and only if ~w >

1
2

�
a2þ b2 � 2mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m� a2 � b2Þ2 þ 4ðma2 þ bci

bcj

q
Þ�,

where a2 ¼ aci þ acj � ack and b2 ¼ bci
þ bcj

, merging ci and
cj into ck (i.e., ck ¼ ci [ cj) has higher modularity gain than
keeping the community structure unchanged.

See Appendix A.3, available in the online supplemental
material, for the proof.

Proposition 4. (CCEA/WI Community Bi-split) After CCEA/
WI between i and j, where ci 6¼ cj, ck ¼ ci [ cj, and fcp, cqg is
another bi-split of ck (i.e., cp � ck and cq ¼ ckncp), if and only

if ~w > 1
2

�
a2 þ b2 � 2mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m� a2 � b2Þ2 þ 4ðma2 þ bcibcj

q
Þ�þ

ma1�bcpbcq
2bcq�a1 , where a1 ¼ aci � acp � acq , a2 ¼ aci þ acj � ack

and b2 ¼ bci þ bcj
, splitting ck into cp and cq has higher modu-

larity gain than either keeping the community structure
unchanged or merging ci and cj into ck.

The proof could be easily derived from Propositions 2
and 3.

4.3.2 Edge Deletion/Weight Decrease (ED/WD)

In this scenario, an edge ði; j; wijÞ between two existing ver-
tices i and j has been changed to ði; j; wij �~wÞ, where
wij �~w > 0. Edge deletion is a special case of edge
weight decrease, where wij ¼~w. Depending on the edge
property, we define two sub-scenarios:

Intra-Community ED/WD (ICED/WD). Vertices i and j
belong to the same community (i.e., ci ¼ cj). According to
Proposition 5, if i or j has one degree, decreasing the edge
weight between i and j will keep the community structure
unchanged. Also, intuitively, if i or j has one degree, deleting
the edge between i and j will result in the same community
structure plus one or two singleton communities (i.e., the ver-
tex of one degree becomes singleton community). Except for
the case above (i.e., i or j has one degree), ICED/WD between
i and j leads to three other possible operations: (a) keeping the
community structure unchanged, if ci is still densely con-
nected; (b) splitting ci into multiple smaller communities, if ci
becomes sparsely connected; and (c) merging ci with some of
its neighbor communities (i.e., the opposite situation of
Remark 1). Since the analytical approach is complex and time
consuming, we propose to initiate all vertices within the com-
munities, that adjacent to i or j (including ci), as singleton
communities.

Proposition 5. For any pair of vertices i, j that belong to the
same community (i.e., ci ¼ cj), if i or j has only one neighbor
vertex (j or i), decreasing the edge weight between i and j, does
not split i and j into different communities.

See Appendix A.4, available in the online supplemental
material, for the proof.

Cross-Community ED/WD (CCED/WD). Vertices i and j
are from two different communities (i.e., ci 6¼ cj). By Propo-
sition 6, CCED/WD strengthens the community structure,
thus, keeping the community structure unchanged.

Proposition 6. If vertices i and j are from different communities
(ci 6¼ cj), deleting an edge or decreasing the edge weight
between i and j, will increase the modularity gain coming from
ci and cj.

See Appendix A.5, available in the online supplemental
material, for the proof.

4.3.3 Vertex Addition (VA)

In this scenario, a new vertex i and its associated edges are
added. On one hand, if i has no associated edge, we make it
as a singleton community and keep the rest community
structure unchanged. On the other hand, if i has one or
more associated edges, some interesting cases would hap-
pen. For instance, if all of i’s associated edges are connected
to the same community, i.e., cj, by Proposition 7, we should
merge i into cj and treat all of i’s associated edges as ICEA/
WI. A more complicated case occurs when i’s associated
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edges are connected to different communities. In this case,
by Proposition 8, we could merge i into community cj that
has the highest ~wij. However, other than simply deter-
mining which community i should merge into, we should
also consider which set of vertices could together with i to
form a new community, or which community could be split
into smaller communities, to further maximize the modular-
ity. To cope with all the cases, where i has one or more asso-
ciated edges, we propose to initialize i and j as a two-
vertices community, where edge eij has the highest weight
among all of i’s associated edges (randomly selecting a ver-
tex j if there are ties), and initialize all the other vertices
within i’s adjacent communities as singleton communities.

Algorithm 1. DynaMo Initialization (Init)

Input: V ðtþ1Þ, Eðtþ1Þ, V ðtÞ, EðtÞ, CðtÞ.
Output:~C1,~C2.
1: ~E  A set of edges changed from EðtÞ to Eðtþ1Þ;
2: ~Vadd  V ðtþ1ÞnV ðtÞ;~Vdel  V ðtÞnV ðtþ1Þ;
3: ~C1  ;;~C2  ;;
4: for eij 2~E do
5: for k 2 fi; jg do
6: if k 2~Vdel then
7: ~C1  ~C1 [ fckg;
8: for ekl 2 EðtÞ do
9: ~C1  ~C1 [ fclg;
10: if k 2~Vadd then
11: ~C1  ~C1 [ fckg;
12: wmax ¼ 0; c ;;
13: for ekl 2 Eðtþ1Þ do
14: ~C1  ~C1 [ fclg;
15: if wkl > wmax then
16: wmax ¼ wkl; c fk; lg;
17: ~C2  ~C2 [ fcg;
18: if i; j =2~Vdel [~Vadd then
19: if eij =2 Eðtþ1Þ or wt

ij > wtþ1
ij then

20: if ci ¼ cj then
21: ~C1  ~C1 [ fcig;
22: for k 2 fi; jg do
23: for ekl 2 EðtÞ do
24: ~C1  ~C1 [ fclg;
25: if eij =2 EðtÞ or wt

ij < wtþ1
ij then

26: if ci ¼ cj then
27: ~C1  ~C1 [ fcig; c fi; jg;
28: ~C2  ~C2 [ fcg;
29: else
30: ~w ¼ wtþ1

ij � wt
ij; ck ¼ ci [ cj;

31: a2 ¼ aci þ acj � ack ; b2 ¼ bci
þ bcj

;
32: d1 ¼ 2m� a2 � b2; d2 ¼ ma2 þ bci

bcj
;

33: if 2~wþ d1 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ 4d2

q
then

34: ~C1  ~C1 [ fci; cjg; c fi; jg;
35: ~C2  ~C2 [ fcg;
36: return~C1,~C2.

Proposition 7. If a new vertex i has been added and all of its
associated edges are connected to the same community, i.e., cj,
merging i into cj has higher modularity gain than keeping i as
a singleton community.

See Appendix A.6, available in the online supplemental
material, for the proof.

Proposition 8. Suppose a new vertex i has been added and its
associated edges are connected to different communities. Let
~wij denote the sum of the edge weights of vertex i’s associated
edges that are connected to community cj. Given two communi-
ties cp and cq, if ~wip > ~wiq, merging i into cp has more
modularity gain than merging i into cq.

See Appendix A.7, available in the online supplemental
material, for the proof.

4.3.4 Vertex Deletion (VD)

In this scenario, an old vertex i and its associated edges are
deleted. On one hand, if i has no associated edge, deleting i
has no influence on the rest of the network, and hence, we
should keep the community structure unchanged. On the
other hand, if i has too many associated edges, deleting i
might cause its community and its neighbor communities
being broken into smaller communities and potentially
being merged into other communities. To handle this case,
we propose to initialize all the vertices within ci and i’s
neighbor communities as singleton communities.

Algorithm 2. DynaMo

Input: Gðtþ1Þ, GðtÞ, CðtÞ.
Output: Cðtþ1Þ.
1: ~C1,~C2 Init(V ðtþ1Þ, Eðtþ1Þ, V ðtÞ, EðtÞ, CðtÞ);
2: Cðtþ1Þ  CðtÞ;
3: for ci 2~C1 do

4: Cðtþ1Þ  Cðtþ1Þnfcig;
5: for k 2 ci do
6: Create singleton community: ck  fkg;
7: Cðtþ1Þ  Cðtþ1Þ [ fckg;
8: for c ¼ fi; jg 2~C2 do
9: Create two-vertices community: ck  fi; jg;
10: Cðtþ1Þ  ðCðtþ1Þnfci; cjgÞ [ fckg;
11: Cðtþ1Þ  Louvain(Cðtþ1Þ, Gðtþ1Þ);
12: return Cðtþ1Þ.

4.4 Implementation and Analysis

4.4.1 Implementation

Algorithm 1 presents the DynaMo Initialization, where we
implement the operation of each type of incremental net-
work change to initialize the intermediate community struc-
ture towards maximizing the modularity. The input
contains the current network Gðtþ1Þ, the previous network
GðtÞ and the previous community structure CðtÞ. The output
contains two set of communities, ~C1 and ~C2, that will
be modified to initialize the intermediate community struc-
ture at the beginning of the second phase. ~C1 contains a
set of communities in CðtÞ to be separated into singleton
communities, and ~C2 contains a set of two-vertices com-
munities to be created. Algorithm 2 presents the second
phase, where the last two steps of Louvain algorithm is
applied on the initialized intermediate community structure
of Gðtþ1Þ.

Most of the operations in Algorithm 1 are theoretically
guaranteed by our propositions described in Section 4.3 to
maximize the modularity, while some of the operations are
heuristically designed for the sake of the efficiency. For
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instance, according to Proposition 1, Remark 1 and Proposi-
tion 2, given ICEA/WI between vertices i and j, we initial-
ize i and j as a two-vertices community to incrementally
maximize the modularity, and initialize all the other vertices
in ci as singleton communities to take all the influenced ver-
tices into consideration carefully while maintaining the
algorithm efficiency (lines 26-28). According to Proposi-
tions 3 and 4, we use a designed threshold condition (lines
30-33) to determine the operation of given CCEA/WI. If the
condition is true, we use the same operation of ICEA/WI to
tackle CCEA/WI (lines 33-35). Otherwise, we keep the com-
munity structure unchanged to incrementally maximize the
modularity. According to Proposition 5 and the analysis in
Section 4.3.2, given ICED/WD, we initialize all the poten-
tially influenced vertices as singleton communities to main-
tain a trade-off between the effectiveness and efficiency
(lines 18-24). According to Proposition 6, given CCED/WD,
we keep the community structure unchanged to maximize
the local modularity gain. According to Propositions 7 and 8,
given new vertex i and its associated edges, we initialize i
and its most closely connected neighbor vertex as a two-
vertices community (lines 12, 15-17), and initialize all the
potentially influenced vertices as singleton communities
(lines 10-16). After deleting vertex i, we heuristically initial-
ize all the vertices within ci and i’s neighbor communities as
singleton communities (lines 6-9). To summarize, initializing
~C2 aims to incrementally maximize the modularity with
certain theoretical guarantees, and initializing ~C1 aims to
heuristically maximize the modularity (by Algorithm 2)
while maintaining the algorithm efficiency.

4.4.2 Time Complexity Analysis

The computation of our algorithm tackling one network
snapshot comes from two parts: (a) the initialization, and
(b) the last two steps of Louvain algorithm. In the initializa-
tion, different network changes trigger different operations,
thus resulting in different computation time. For instance, if
one network change is ICEA/WI (i.e., eij, ci ¼ cj), our algo-
rithm (line 26-28) will add ci into ~C1, and add c ¼ fi; jg
into ~C2. The time complexity of both operations are Oð1Þ,
thus, the time complexity to deal with single change of
ICEA/WI is Oð1Þ. Similarly, the time complexities to deal
with single change of CCEA/WI (line 29-35) and CCED/
WD (no operation needed) are also Oð1Þ. To deal with single
change of ICED/WD, VA or VD, our algorithm runs
through the set of neighbor vertices of the changed edge,

and thus, result in OðjEjjV jÞ time complexity. Furthermore, as

shown in Algorithm 1, each network snapshot usually has
multiple network changes. Since the number of network
changes is proportional to ~E, the overall time complexity

of the initialization is Oðj~EjÞ or Oðj~Ej � jEjjV jÞ.
The time complexity of the original Louvain algorithm is

OðjEjÞ. However, compared with the Louvain algorithm ini-
tialization, our algorithm considers the historical informa-
tion and designs an initialization phase to reduce the
number of edges left for the second phase analysis as much
as possible. Thus, the time complexity of the second phase
of our algorithm is OðjEj	Þ, where jEj	 
 jEj. Hence, the
overall best case time complexity of our algorithm is

Oðj~Ej þ jEj	Þ, and the worst case is Oðj~Ej � jEjjV j þ jEj	Þ.

5 EXPERIMENTAL EVALUATION

5.1 Experiment Environment

All the experiments were conducted on a PC with an Intel
Xeon Gold 6148 Processor, 128 GB RAM, running 64-bit
Ubuntu 18.04 LTS operating system. All the algorithms and
experiments are implemented using Java with JDK 8.

5.2 Baseline Approaches

We compare DynaMo with Louvain (Section 3.4), and 5
dynamic algorithms: (i) Batch [20]: a batch-based incremental
modularity optimization algorithm; (ii) GreMod [16]: a rule-
based incremental algorithm that performs predetermined
operations on edge additions; (iii) QCA [15]: a rule-based
incremental algorithm that updates the community structures
according to predefined rules of vertex/edge additions/dele-
tions; (iv)LBTR [18]: a learning-based algorithm that uses clas-
sifiers to update community assignments. We use Support
Vector Machine (SVM) and Logistic Regression (LR) as the
classifiers, namely LBTR-SVM and LBTR-LR.

5.3 Experiment Datasets

We conduct our experiments on two categories of networks:
real-world networks (ground-truth is unknown), and syn-
thetic networks (ground-truth is known).

5.3.1 Real-World Dynamic Networks

As shown in Table 1, six real-world networks are used in
our experiments. (i) Cit-HepPh (Cit-HepTh) [36] contains the
citation network of high-energy physics phenomenology
(theory) papers from 1993 to 2003. (ii) DBLP [37] contains a
co-authorship network of computer science papers ranging
from 1954 to 2015, where each author is represented as a

TABLE 1
Description of the Real-World Dynamic Networks [Notations: jV j (jEj):# of UniqueVertices (Edges);E½j~V j� (E½j~Ej�): Avg.# of

Vertices (Edges) Changed per Network Snapshots;# of Snapshots: Total Number of Consecutive Network Snapshots; Time-Interval:
Period of Time Between TwoConsecutive Network Snapshots; Time-Span: Total TimeSpanning of EachNetworkDataset]

networks jVj E½j~Vj� vertex-type jEj E½j~Ej� edge-type # of snapshots time-interval time-span

Cit-HepPh 30,501 6,460 author 346,742 11,127 co-citation 31 4 months 124 months
Cit-HepTh 7,577 1,253 author 51,089 2,042 co-citation 25 5 months 125 months
DBLP 1,411,321 122,731 author 5,928,285 191,233 co-authorship 31 2 years 62 years
Facebook 59,302 12,765 user 592,406 20,943 friendship 28 1 month 28 months
Flickr 780,079 93,253 user 4,407,259 168,977 follow 24 3 days 72 days
YouTube 3,160,656 91,954 user 7,211,498 175,303 subscription 33 5 days 165 days

1940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 5, MAY 2021

Authorized licensed use limited to: University of South Florida. Downloaded on April 12,2021 at 18:57:52 UTC from IEEE Xplore.  Restrictions apply. 



vertex and co-authors are linked by an edge. (iii) Facebook
[38] contains the user friendship establishment information
from about 52 percent of Facebook users in New Orleans
area, spanning from September 26th, 2006 to January 22nd,
2009. In this network, each vertex represents a Facebook
user, and each edge represents an user-to-user friendship
establishment link that contains a timestamp representing
the time of friendship establishment. (iv) Flickr [39] was
obtained on January 9th, 2007, and contains over 1.8 million
users and 22 million links, and each link has a timestamp
that represents the time of the following link establishment.
We select a sub-network, where all the user-to-user follow-
ing links were established from March 6th, 2007 to May
15th, 2007. (v) YouTube [40] was obtained on January 15th,
2007 and consists of over 1.1 million users and 4.9 million
links, and each link has a timestamp that represents the
time of the subscribing link establishment. We select a sub-
network, where all the user-to-user subscribing links were
established from February 2nd, 2007 to July 23rd, 2007.

5.3.2 Synthetic Dynamic Networks

We use RDyn [41], a benchmark model focusing on commu-
nity changes in dynamic networks, to generate synthetic
networks and their ground-truth communities. It allows us
to specify different parameters, such as the number of verti-
ces (N), the number of time points (T ), the maximum num-
ber of community change events (e.g., splitting or merging)
per time point (M), etc.. We use various combinations of N ,
T and M to generate synthetic networks, where N 2 f200;
400, 600, 800, 1000g, T 2 f25; 50, 75, 100, 125g, M 2 f1; 2, 3,
4g and all the other parameters set by default values. For
each parameter combination (out of 100 combinations in
total), we randomly generate 100 synthetic networks, result-
ing in 10,000 synthetic networks in total.

5.4 Experimental Procedure

For each real-world network, we apply Louvain algorithm
on its initial snapshot to obtain its initial community struc-
ture (Section 4.2). For each synthetic network, we use the
ground-truth communities of its initial snapshot as its initial
community structure. For the rest of snapshots of real-world
and synthetic networks, the dynamic algorithms only use
the initial community structure and the network changes
between two consecutive snapshots to update the new com-
munity structures, while the static algorithm will be applied
on the whole network of each snapshot. All experiments are
performed for 200 times to obtain the average results.

5.5 Effectiveness Analysis

5.5.1 Effectiveness Metrics

We evaluate the effectiveness of the community detection algo-
rithms using three metrics: modularity, Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI). Modular-
ity (Section 3.3) is designed to measure the strength of dividing
a network into communities, and does not require the ground-
truth information. Hence, we use modularity to evaluate the
results of the real-world networks. NMI and ARI are designed
to measure the similarities between the community structure
obtained from the experiments and that of the ground-truth,
which are used to evaluate the results of the synthetic networks.

Let Ct denote the ground-truth community division, and
Cr denote the experiment result. NMI is defined as follows:

NMIðCt; CrÞ ¼ 2 � IðCt; CrÞ
½HðCtÞ þ HðCrÞ� ; (2)

where HðCrÞ is the entropy of Cr, and IðCt;CrÞ is the
mutual information between Ct and Cr. NMI ranges from 0
to 1. NMI closing to 1 indicates Cr is similar to Ct, while
closing to 0 means Cr is random compared with Ct.

Let a be the number of pairs of vertices in the same com-
munity in both Ct and Cr, b be the number of pairs of verti-
ces in the same community in Ct and in different
communities in Cr, c be the number of pairs of vertices in
different communities in Ct and in the same community in
Cr, d be the number of pairs of vertices in different commu-
nities in both Ct and Cr. ARI is defined as follows:

ARIðCt; CrÞ ¼ 2ðad�bcÞ
b2þc2þ2adþðaþdÞðbþcÞ ; (3)

where its upper bound is 1, and the higher, the better.

5.5.2 Experimental Results

Fig. 3 shows the modularity results of 7 algorithms running
on 6 real-world networks, respectively. We observe that
DynaMo consistently outperforms all the other dynamic
algorithms in terms of modularity. Compared with the run-
ner-up algorithm (Batch), DynaMo obtains 2.6, 2.2, 4.3, 2.1,
1.1 and 2.2 percent higher modularity averaged over all the
time points, and 3.2, 4.4, 17.3, 2.4, 1.2 and 4.7 percent higher
modularity on the last time point of Cit-HepPh, Cit-HepTh,
DBLP, Facebook, Flickr and YouTube, respectively. Com-
pared with Louvain, DynaMo achieves nearly identical per-
formance, with only 0.49, 0.38, 0.06, 0.7, 0.5 and 0.5 percent
lower modularity averaged over all the time points, and
only 0.52, 0.74, 0.27, 0.46, 0.5 and 1.7 percent lower modular-
ity on the last time point of Cit-HepPh, Cit-HepTh, DBLP,
Facebook, Flickr and YouTube, respectively.

Fig. 4 shows the NMI results (mean and standard devia-
tion) of 6 dynamic algorithms running on 10,000 synthetic
networks. We observe that DynaMo obtains the highest
NMI value among all the dynamic algorithms regardless of
any RDyn parameters. DynaMo outperforms the runner-up
algorithm (QCA) by 69.1, 66.4 and 70.3 percent on average
with the increase of the number of vertices, the maximum
number of events per time point, and the number of time
points, respectively, which is statistically significant accord-
ing to the two-sample t-test with 95 percent confidence
interval. The NMI standard deviation of DynaMo is also
lower than that of QCA, demonstrating the consistency of
DynaMo in detecting communities of various dynamic net-
works. Furthermore, as the maximum number of events per
time point and the number of time points increase, DynaMo
has the minimum NMI value loss among all the dynamic
algorithms, indicating DynaMo is more robust and consis-
tent while detecting communities of dynamic networks that
last longer and have more events per time point.

Fig. 5 shows theARI results (mean and standard deviation)
of 6 dynamic algorithms running on 10,000 synthetic net-
works, which share similar patterns as the NMI results.
DynaMo outperforms the runner-up algorithm (QCA) by
211.1, 224.5 and 257.6 percent on average with the increase of
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the number of vertices, the maximum number of events per
time point, and the number of timepoints, respectively,which
is statistically significant according to the two-sample t-test
with 99 percent confidence interval. As the number of vertices
increases, the ARI standard deviation of DynaMo dramati-
cally decreases, while as the maximum number of events per
time point and the number of time points increase, the stan-
dard deviation of DynaMo slightly increases. However, even

considering the standard deviation difference, DynaMo still
significantly outperforms all the other dynamic algorithms.

5.6 Efficiency Analysis

5.6.1 Time Complexity Analysis

Table 2 shows the theoretical time complexities of all the
competing algorithms. DynaMo, QCA and GreMod have

Fig. 3. The modularity results of real-world networks. (a) Cit-HepPh. (b) Cit-HepTh. (c) DBLP. (d) Facebook. (e) Flickr. (f) YouTube.

Fig. 4. The NMI results of synthetic networks. (a) The# of vertices. (b) The maximum# of events per time point. (c) The# of time points.

Fig. 5. The ARI results of synthetic networks. (a) The# of vertices. (b) The maximum# of events per time point. (c) The# of time points.
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different time complexities while running in different sce-
narios (i.e., best/worst case). As discussed in Section 4.4.2,
DynaMo has the best case time complexity when the net-
work changes are ICEA/WI, CCEA/WI or CCED/WD, and
otherwise, has the worst case time complexity. Similarly,
QCA and GreMod have the best case time complexity if the
network changes are ICEA or CCED, and otherwise, have
the worst case time complexity. For the other algorithms,
the time complexities of the best and the worst cases are
identical. Below show the details about our analysis.

� Compared with Louvain [24], DynaMo has less time
complexity, when the impact of the network changes
of a given network snapshot on its community struc-
ture updating is small enough to ensure m	d 
 m.
First, the evolutionary nature of the real-world
dynamic networks assumes two consecutive network
snapshots of the same network should have similar
community structures. Therefore, each snapshot of a
dynamic network should only result in a small part of

its community structure being updated (i.e.,m	d 
 m).
Also, from our empirical studies, the assumption of
m	d 
 m always holds. Hence, DynaMo should be
more efficient than Louvain formost of the time.

� Comparedwith Batch [20], DynaMo has less initializa-
tion time complexity (i.e., Oð� � mnÞ < Oððyþ �Þ � mnÞ),
and different second phase time complexities (i.e., m	d
versusm	b ).

� Compared with QCA [15] and GreMod [16], who
update the community structure according to certain
predefined rule of each network change and one at a
time (i.e., not in a batch fashion), DynaMo is more
efficient if each network snapshot has more network
changes, since DynaMo is capable of handling a
batch of network changes.

� Compared with LBTR [18], who uses machine learn-
ing models to decide if a vertex needs to revise its
community, DynaMo is more consistent and practi-
cal when dealing with different real-world net-
works. Since the characteristics of an dynamic
network keep changing over time, LBTR has to
keep updating the machine learning models to
adapt the new characteristics. In such case, we have
to take the training time into account. Also, the time
complexity of LBTR highly depends on the machine
learning algorithm used for the classification prob-
lem (e.g., OðTSVMÞ > OðTLRÞ).

5.6.2 Empirical Result Studies

Since the theoretical time complexities always depend on the
ideal scenarios or extreme cases, it is necessary to conduct
empirical studies using real-world networks. To ensure the
comparison is as unbiased as possible, all the algorithms are
implemented using Java and running on the same environ-
ment. Fig. 6 shows the cumulative elapsed time results, and
below show the details about our observations.

Fig. 6. The cumulative elapsed time results of real world networks. (a) Cit-HepPh. (b) Cit-HepTh. (c) DBLP. (d) Facebook. (e) Flickr. (f) YouTube.

TABLE 2
A Comparison of the Time Complexities of the Competing

Algorithms [Notations: n ¼ jV j (m ¼ jEj):# of Unique Vertices
(Edges); y ¼ j~V j (� ¼ j~Ej):# of Vertices (Edges) Changed;
m	b (m

	
d):# of Unique Vertices (Edges) after the Initialization

Phase of Batch (DynaMo), andm	b 
 m (m	d 
 m); TLR (TSVM ):

The Time Complexity of Using Logistic Regression
(Support Vector Machine) in LBTR]

algorithms the best case the worst case

Louvain [24] OðmÞ OðmÞ
Batch [20] Oððyþ �Þ � mn þm	bÞ Oððyþ �Þ � mn þm	bÞ
DynaMo Oð�þm	dÞ Oð� � mn þm	dÞ
QCA [15] Oð�Þ Oð� �mÞ
GreMod [16] Oð�Þ Oð� � nÞ
LBTR-LR [18] Oðy � TLRÞ Oðy � TLRÞ
LBTR-SVM [18] Oðy � TSVMÞ Oðy � TSVMÞ
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� Compared with Louvain [24], DynaMo obtains over
2x, 2x, 4x, 3x, 4x and 3x speed up on the series of net-
work snapshots of Cit-HepPh, Cit-HepTh, DBLP,
Facebook, Flickr and YouTube, respectively.

� Compared with Batch [20], DynaMo obtains over 3x,
5x, 2x, 7x and 5x speed up on the series of network
snapshots of Cit-HepPh, Cit-HepTh, DBLP, Facebook
and Flickr, respectively. DynaMo spends nearly
the same amount of time as Batch on YouTube
network.

� Compared with QCA [15], DynaMo obtains over 2x,
2x, 4x and 5x speed up on the series of network snap-
shots of Cit-HepTh, Facebook, Flickr and YouTube,
respectively. DynaMo is as efficient as QCA on
DBLP network, and spends slightly more time on
Cit-HepPh network than QCA.

� Compared with GreMod [16], DynaMo spends more
time on most of the networks, and only performs bet-
ter on the Flickr and YouTube network.

� Compared with LBTR [18], DynaMo is much more
efficient than LBTR-SVM, and spends slightly more
time than LBTR-LR on certain networks.

5.7 Summary of the Experimental Evaluation

DynaMo consistently outperforms all the other 5 dynamic
algorithms on 6 real-world networks and 10,000 synthetic
networks in terms of the effectiveness (i.e., modularity,
NMI and ARI) of detecting communities. DynaMo has
almost identical performance as Louvain in terms of the
effectiveness, with only 0.27 to 1.7 percent lower modu-
larity on certain networks. DynaMo also performs compa-
rably well in terms of the efficiency. For instance, in
terms of the cumulative elapsed time results, DynaMo
outperforms Louvain, Batch and LBTR-SVM, and obtains
similar performance as QCA and LBTR-LR. Even though
GreMod acts more efficient than DynaMo, DynaMo is
much more effective than GreMod (e.g., GreMod has the
worst effectiveness performance running on nearly all
datasets). In conclusion, DynaMo significantly outper-
formed the state-of-the-art dynamic algorithms in terms
of effectiveness, and demonstrated much more efficient
than the state-of-the-art static algorithm, Louvain algo-
rithm, in detecting communities of dynamic networks,
while also maintaining similar efficiency as the best set of
competing dynamic algorithms.

6 CONCLUSION

In this paper, we proposed DynaMo, a novel modularity-
based dynamic community detection algorithm, aiming to
detect communities in dynamic networks. We also present
the theoretical guarantees to show why/how our operations
could maximize the modularity, while avoiding redundant
and repetitive computations. In the experimental evalua-
tion, a comprehensive comparison has been made among
our algorithm, Louvain algorithm and 5 other dynamic
algorithms. Extensive experiments have been conducted on
6 real world networks and 10,000 synthetic networks. Our
results show that DynaMo outperforms all the other 5
dynamic algorithms in terms of the effectiveness, and is 2 to
5 times (by average) faster than Louvain algorithm.
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