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Abstract—In machine learning, boosting is one of the most
popular methods that is designed to combine multiple base
learners into a superior one. The well-known Boosted Decision
Tree classifier has been widely adopted in data mining and
pattern recognition. With the emerging challenge in privacy,
the data, like social images, browsing history, and financial
reports, which are held by individuals and entities are more
likely to contain sensitive information. The privacy concern is
intensified when the data leaves the hand of the owners and
is further used for data mining. Such privacy issues demand
that the machine learning algorithms should be privacy-aware.
Recently, Local Differential Privacy has been proposed as an
effective privacy protection approach, which allows data owners
to perturb the data before any release. In this paper, we propose
a distributed privacy-preserving boosting algorithm that can be
applied to various types of classifiers. By adopting LDP as a
building block, the proposed boosting algorithm leverages the
aggregation of the perturbed data shares to build the base learner,
which ensures that privacy is well preserved for the participated
data owners. Our experiments demonstrate that the proposed
algorithm effectively boosts various classifiers and a high utility
is maintained.

Index Terms—Ensemble Learning, Boosting, Local Differential
Privacy

I. INTRODUCTION

In machine learning, ensemble learning [1] refers to the
strategy of combining multiple hypotheses to form a better
one. Lots of work has been conducted under the area and there
are three conventional methods, bagging [2], boosting [3],
[4] and stacking [5]. Among all three methods, the boosting
method trains a series of weak learners, and the final decision
is made by a majority voting of these weak learners. As an
example, Boosted Decision Tree (BDT) has great popularity
and is widely adopted in many applications, like text mining
[6], geographical classification [7], and finance [8]. Initially,
the boosting algorithm is developed under the assumption
of a centralized fashion, where all data has been collected
altogether. However, in the big data era, the data is generated
and stored far more sparsely, which brings new challenges
and difficulties for such centralized algorithm, for instance,
privacy protection is one of the most emerging demands in
current society.

Data explosion results in tons of data are generated and
held by individuals and entities, such as personal images,
browsing histories, and financial records. Training a machine
learning model using such data can have severe privacy
risks [9]. The AOL search engine log [10] and Netflix prize
contest [11] attacks highlight such threats and suggest that
machine learning model should be privacy-aware. In the last
decade, as a promising solution, a mechanism is said to be
differentially private [12] if the computation result of a dataset

is robust to any change of the individual sample. A common
assumption [13] is that there exists a trusted data curator
who gathers data from multiple data parties and honestly runs
the private algorithms. Comparing to DP, Local Differential
Privacy (LDP) [14] eliminates the need of such trusted data
curator, a mechanism is said to be local differentially private if
the processing makes any two samples indistinguishable. One
advantage of LDP is that it allows the data owners to perturb
the local data by themselves and only release the perturbed
samples if needed. Thus unlike DP, there is no need of a trusted
third party anymore.

The indistinguishability of any two data samples brings
a strong privacy guarantee for the data owners, and LDP
can be used as an effective tool to develop the privacy-
preserving machine learning algorithms. To the best of our
knowledge, the existing privacy-preserving boosted classifiers
are mostly the tree-based classifiers, like differently private
decision tree [15] and differentially private GBDT [16], [17].
By design, boosting is not algorithmically constrained and it
can be applied various types of the classifiers. In this paper, we
are eager to fill such gap by developing a privacy-preserving
boosting algorithm that is model-agnostic. In particular, we
consider a distributed setting as RAPPOR [18], where a cloud
service operator, we call it the data user, has an intention to
collect the data samples from multiple data owners (e.g., tens
of millions of Chrome web browser users) and fit a boosted
classifier (e.g., BDT). The proposed privacy-preserving boost-
ing algorithm leverages LDP as a building block, and it ensures
that the privacy of the individual sample held by data owners
is preserved.

The LDP mechanism uses a variable, ε, to measure the
privacy loss, the smaller ε is, the more privacy gets preserved,
and privacy budget refers to the maximum privacy loss. In non-
private boosting, the training data participates in all iterations,
while by adopting ε-LDP, reusing the same training data will
continuously consume the privacy budget and ultimately leave
the data deanonymized. To resolve such challenge, only a
subset of data owners is picked to participate in one iteration,
and each data owner is asked to contribute the local data share
at most once, which provides a strong privacy guarantee.

In our design, the base leaner is trained using the perturbed
data shares held by the data owners. To boost various types
of classifiers, the data share falls into three types, i.e., local
sample, local statistic and local classifier. Local sample is the
atomic representation of the data possessed by the data owner
and local classifier refers to a local classifier that trained by
individual data owner. And the local statistic fills the gap
between the two end representations, which is a statistical
summary of the local dataset. To protect the data privacy,
we leverage the ε-LDP mechanism to protect the data share
during the joint training. According to each type of local
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share, we implement an example of the privacy-preserving
boosted classifier and demonstrate how the local data shares
are perturbed and aggregated.

Overall, the contribution of our work is three fold:
• We propose a distributed privacy-preserving boosting

algorithm which utilizes ε-LDP mechanism to prevent
privacy leakage in the joint training, and the base learner
is trained by the aggregation of the perturbed data shares.
For a strong privacy guarantee, each data owner only
contributes the perturbed data share and participates in
the joint training at most once.

• The proposed algorithm is generalized and is able to
boost various types of classifiers trained by different
data shares. To demonstrate, we implement the privacy-
preserving boosted Nearest Centroid Classifier (w.r.t.
local sample), the BDT (w.r.t. local statistic) and the
boosted Logistic Regression classifier (w.r.t. local clas-
sifier). For each boosted classifier, we analyze the con-
vergence condition and the trade-off between the utility
and privacy.

• We comprehensively evaluate three boosted classifiers
in terms of the classification performance over real and
synthetic datasets. In the experiment, we also horizontally
compare against two existing perturbation methods. The
classification performance confirm that the adopted LDP
perturbation method leads to the minimized error and the
boosted classifier effectively maintains a high utility.

The rest of the paper is organized as follow. The prelim-
inary is in Section II. The problem definition and proposed
solution are introduced in Section III. Section IV introduces
3 classifiers that are boosted by the proposed algorithm. The
evaluation is given in Section V. Section VI presents the related
work. Section VII provides the conclusion.

TABLE I: Notations and Symbols

(Xl, Y l) the dataset held by the lth data owner
(xi

l, yli) the ith sample and label held by the lth data owner
N l number of sample held by lth the data owner
L the number of data owners
d dimensiona of the dataset
x′i the perturbed output of xi
wi weights of the ith samples
K number of classes in the dataset
Ck kth class label
M number of base learners in the boosting algorithm
Tm the mth base learner
ε-DP ε-differential privacy
ε-LDP ε-local differential privacy

LR logistic regression
DT decision tree

BDT boosted decision tree
NCC nearest centroid classifier
MSE mean squared error

II. PRELIMINARY

A. Boosting

In supervised learning, Boosting [3] is a widely used ensem-
ble algorithm to reduce the bias and variance. As an generic

algorithm, boosting is designed to train a sequence of weak
models and the prediction is made by a majority voting of such
weak models. Here, the term “weak” indicates that the each
individual model might have a low prediction accuracy, i.e.,
the weak models could perform slightly better than random
guess. Since boosting algorithm trains weak models iteratively,
we use weak model and base learner interchangeably in this
paper. AdaBoost [4] is one of the most popular learning
methods in the last two decades. In the classification problem,
the base learner in each iteration is trained to correct the
predictions of samples that are misclassified in previous round,
and it proves [4] that the final model can converge to a
strong learner, if the base learner performs better than random
guessing. In general, SAMME [19] is a multi-class AdaBoost
algorithm that requires the prediction accuracy of the base
learner is better than 1/K, assuming there are K classes in
the problem. Given the training data {(xi, yi), i = 1 : N},
where xi ∈ Rd, yi ∈ {C1, C2, . . . , CK}, the pseudo code of
the SAMME [19] algorithm is presented in Alg. 1:

Algorithm 1 Stagewise Additive Modeling using a Multi-class
Exponential loss function (SAMME)

1: Input: {(x1, y1), . . . , (xn, yn)}.
2: Initialize the observation weights wi = 1/N, i = 1 : N
3: for m=1:M do
4: Fit a classifier Tm(·) to the training data using weights

wi
5: errm ←

∑N
i=1 wiI(yi 6=Tm(xi))∑n

i=1 wi

6: αm ← log 1−errm
errm

+ log(K − 1)
7: wi ← wi · exp(αm · I(yi 6= Tm(xi))), i = 1 : N
8: Re-normalize wi
9: end for

10: return {(α1, T1(·)), . . . , (αm, Tm(·))}

With the output of Alg. 1, given a testing sample xt,
ŷt ∈ {C1, C2, . . . , CK} is assigned by the majority vote of m
weighted base learners, i.e., argmaxk

∑
m αm · I(Tm(xt) =

Ck).

B. Boosted Decision Tree
Boosted Decision Tree(BDT) classifier trains a sequence

of Decision Tree (DT) classifiers, where the DT is created
iteratively. The internal node of the tree represents a condition,
and it decides which branch to proceed. Building a DT needs
to pick the proper attributes for internal nodes consequently
and the tree stops growing when it reaches the leaf node. In
each internal node, the best attribute to split is determined
by the impurity measurement before and after split over that
attribute, where information gain, Gini index and misclassi-
fication error [20] are 3 common impurity measurements. In
this paper, we use the misclassification error to determine the
best attribute, since it is successfully adopted in the distributed
environment [21]. Usually, BDT trains several DTs that only
have one binary branch, which are called decision stumps and
the decision function is given below,

f(x|j, η) =

{
+1, if xj ≥ η,
−1, otherwise,

(1)



3

where xj refers to the jth feature value of x and η refers to
a threshold.

C. Differential Privacy

Differential Privacy (DP) [12] attracts lots of attention in
the privacy research community in the last decades, which
provides a measurement of the information leakage of indi-
vidual samples inside an underlying dataset. DP considers the
setting that a trusted data curator gathers data from multiple
data owners and performs statistical analysis over the data, like
learning the mean or variance of the data. However, releasing
such statistical analysis without any protection may reveal the
existence of the individual sample. Thus the general idea of
DP is to perturb the true statistical value and hide the existence
of underlying samples. Given a mechanism that satisfies ε-DP,
the smaller ε is, the more difficult to derive the existence of a
sample.
Formally, given two data databases A,A∗, it is said that A,A∗

are neighbors if they differ on at most one row. The definition
of a (ε, δ)-differential private mechanism over A is defined
below:

Definition 1 (ε, δ)-Differential Privacy [12]: A randomized
mechanism F is (ε, δ)-differentially private if for every two
neighboring databases A,A∗ and for any O ⊆ Range(F),

Pr[F(A) ∈ O] ≤ eεPr[F(A∗) ∈ O] + δ, (2)

where Pr[·] denotes the probability of an event, Range(F)
denotes the set of all possible outputs of the algorithm F . The
smaller ε, δ are, the closer Pr[F(A) ∈ O] and Pr[F(A∗) ∈
O] are, and the stronger privacy protection gains. When δ = 0,
the mechanism F satisfies ε-DP, which is a stronger privacy
guarantee than (ε, δ)-DP with δ > 0.

D. Local Differential Privacy

Similar to DP, Local Differential Privacy (LDP) is intro-
duced by Duchi et al. [14], which assumes that the data owners
don’t even trust the data curator, and the privacy protection is
shifted from the data curator to data owners themselves. And
the perturbation can be applied to the samples of a dataset
rather than the statistics. The formal definition is given below:

Definition 2 ε-Local Differential Privacy [14]: A randomized
mechanism G satisfies ε-LDP if for any input v1 and v2 and
for any O ⊆ Range(G):

Pr[G(v1) ∈ O] ≤ eεPr[G(v2) ∈ O]. (3)

Compared to DP, LDP provides a stronger privacy protec-
tion in the distributed setting. Instead of releasing the true
dataset, the data owners who own a local dataset perturb all
samples using the mechanism that satisfies ε-LDP and then
only share the perturbed samples, which ensures that the true
dataset never leave the data owners’ hands.

Several perturbation methods that satisfy ε-LDP are studied
to perturb the categorical [18], [22] and numerical [23]–[25]
values respectively. In this paper, we use algorithms developed
by Wang et al. [25] as a building block to perturb the local
shares held by the data owner, the formal algorithms are
introduced in the following subsections.

Algorithm 2 Piecewise Mechanism for One-Dimensional
Numeric Data [25]

1: Input: (xi, ε)
2: ∆← eε/2+1

eε/2−1

3: ψleft(xi)← ∆+1
2 · xi − ∆−1

2
4: ψright(xi)← ψleft(xi) + ∆− 1
5: Sample v uniformly at random from [0, 1];
6: if v < eε/2

eε/2+1
then

7: Sample x′i uniformly at random from
[ψleft(xi), ψright(xi)]

8: else
9: Sample x′i uniformly at random from [−∆, ψleft(xi)]∪

[ψright(xi),∆]
10: end if
11: return x′i

1) One-Dimensional Perturbation: Alg. 2 takes a single
numerical value xi ∈ [−1, 1] as input and returns a perturbed
value x′i ∈ [−∆,∆], where it confines x′i to a relatively
small domain and allows x′i to be close to xi (i.e., x′i ∈
[ψleft(xi), ψright(xi)]) with reasonably large probability (i.e.,
eε/2

eε/2+1
). For the mean estimation, with at least 1−β probabil-

ity, it is shown that | 1n
∑n
i=1 x

′
i− 1

n

∑n
i=1 xi| ∈ O(

√
log(1/β)

ε
√
n

),
which is an error bound with the incurred noise and is
asymptotically optimal [24]. In the case that the input domain
is not within the range [−1, 1], i.e., xi ∈ [−a, a], a > 0,
x∗i = xi/a is calculated and used as input of Alg. 2. Then
x∗′i is the perturbed output of x∗i , and x∗′i · a is released. It’s
also assumed that a is the public information in the literature
[24].

Algorithm 3 Piecewise Mechanism for Multi-Dimensional
Numeric Data [25]

1: Input: (x, ε)
2: x′ ←< 0, 0, . . . , 0 >
3: k ← max{1,min{d, b ε

2.5c}}
4: Sample k values uniformly without replacement from
{1, 2, . . . , d}

5: for each sampled attribute j do
6: x′j = d

kAlg. 2(xj ,
ε
k )

7: end for
8: return x′

2) Multi-Dimensional Perturbation: Alg. 3 takes a d-
dimension vector x ∈ [−1, 1]d as input and returns a perturbed
vector x′ ∈ [−d ·∆, d ·∆]d. To minimize the worst-case noise
variance, k < d attributes are randomly chosen to be perturbed
by Alg. 2. Compared to naive solution of perturbing each
attribute with a privacy budget of ε/d, Alg. 3 incurs less noise
in the mean estimation, where the total amount of noise of the
naive solution is in O(d

√
logd

ε
√
n

), which is super-linear to d; and
it can be shown that Alg. 3 is still asymptotically optimal, i.e.,

E[maxj∈[1,d]| 1n
∑n
i=1 x

′
i,j − 1

n

∑n
i=1 xi,j |] ∈ O(

√
dlog(d/β)

ε
√
n

)
with at least 1−β probability, where the full proof is referred
to the original work [25].
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III. PROBLEM DEFINITION AND PROPOSED SOLUTION

A. Problem Definition

In this paper, we are interested in developing a privacy-
preserving boosting algorithm in a distributed setting. As Fig.1
shows, we consider the following problem: Given L data
owners, each one holds a local dataset (X l, Y l),xli ∈ Rd and
yli ∈ {C1, C2, . . . , CK}, where yli is the class label associated
with xli; the untrustworthy data user would like to fit a boosted
classifier using {(X l, Y l), l = 1 : L}. In this paper, we assume
that the data possessed by the data owner is in numerical
representation; for the categorical feature that has k distinct
values, it can be transformed to k − 1 binary features using
one-hot encoding and then be proceeded accordingly. The
privacy constraint comes in two-folds at the data owner side,
firstly, the data owner is not willing to share the true training
samples to the data user in order to protect the data privacy;
secondly, any inference of the individual data sample should
be prevented from the intermediate exchanged messages. The
symbols and notations used in this paper are summarized in
Table. I.

(X1,Y1)

(X2,Y2) 

Data Owner 1

Data Owner 2

Data Owner L

(XL,YL) 

Data User

d 

Fig. 1: Problem Overview. Data owner l holds a set of samples
(X l, Y l), xli ∈ Rd, and yli ∈ {C1, C2, . . . , CK} is the label
associates with xli; the untrustworthy data user would like to
fit a boosted classifier with training samples from all L data
owners. The privacy of xli should be protected against the
untrustworthy data user.

B. Threat Model

In the problem, we assume that the data owners are honest-
but-curious, which implies that every data owner is obliged
to follow the protocol, while each one intentionally likes to
extend their knowledge during the execution of the protocol;
the data user is untrustworthy and is assumed to be the adver-
sary, who intends to infer the private information possessed
by the data owner. It is further assumed that the data user
holds a subset of data that follows the same distribution, and
he has arbitrary background knowledge as well as unlimited
computation power. The goal is to enforce the privacy of
individual data instances while maintaining the utility of the
learned classifier. Furthermore, the untrustworthy data user
could behave dishonestly, which would not compromise data
owner’s privacy with our solution, but it will hurt the utility of

the learned classifier. Therefore, it is of the data user’s interest
to correctly execute the algorithm. As such, our solution
protects the data privacy for each data owner. Since the data
owner is assumed to be honest-but-curious, data pollution
attacks, e.g., data owners maliciously modify their inputs to
bias the classifier learned by the data user, are beyond the
scope of this paper.

C. Privacy-Preserving Boosting

The proposed privacy-preserving boosting algorithm is run
by the data owner and data user collaboratively. Recall that
boosting algorithm train a sequence of base learners iteratively,
and each base learner is learned by a subset of data owners
in our problem. Instead of sharing the true local datasets,
our proposed algorithm utilizes the perturbed local datasets
to build the base learners. Alg. 4 gives a high-level overview
of the privacy-preserving boosting algorithm.

Algorithm 4 Privacy-Preserving Boosting

1: Input: {(X1, Y 1, ε1), . . . , (XL, Y L, εL), (Xu, Y u)}
2: for l=1:L do
3: Initialize the observation weights wli = 1/N l, i = 1 :

N l

4: end for
5: for m=1:M do
6: Data user randomly selects a distinct group of H data

owners.
7: for h=1:H do
8: The h-th data owner prepares the local share V h ∈

Rd and perturbs it with εh to get V h
′

9: end for
10: Data user collects V h

′
and computes the base learner

Tm ← Aggregate (V 1′
, . . . , V H

′
)

11: wem ←
∑Nu

i=1 w
u
i I(yui 6= Tm(xi

u))

12: wsm ←
∑Nu

i=1 w
u
i

13: errm ← wem
wsm

14: αm ← log 1−errm
errm

+ log(K − 1)
15: if αm ≤ 0 then
16: Go to line 6 and recompute Tm
17: end if
18: for l=1:L do
19: wli ← wli · exp(αm · I(yli 6= Tm(xli))), i = 1 : N l

20: end for
21: end for
22: return {(α1, T1(·)), . . . , (αm, Tm(·))}

Alg. 4 consists of three stages: 1), line 6-9, a subset of
H data owners get randomly selected to participate in current
round and each data owner prepares a perturbation of the local
share. It should be noted that the representation of the local
share is different according to the type of the classifier to
boost, and we further demonstrate the perturbation using 3
different types of classifiers in Section IV; 2), line 10-14, data
user aggregates the perturbed local shares to train the base
learner, and then the data user applies his own local dataset
(Xu, Y u) to derive the error rates errm and the weights αm;
3), line 18-20, the data user shares αm to L data owners and
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lets each update the weights of local samples. Overall, line 6-
20 completes one iteration of the privacy-preserving boosting,
and line 22 outputs the final meta-classifier which consists of
m base learners.

D. Privacy and Utility Analysis

There are three main changes in our proposed algorithm
compared to Alg. 1.

1) To protect the privacy, at line 8 of Alg. 4, the data owner
computes a local share and perturbs it accordingly; it’s the
perturbed value that submitted to the data user rather than
the true values, i.e., in a single iteration, the data user only
accesses V h

′
, which is the perturbation of V h.

2) The base learner is trained using the aggregated perturbed
shares, and the algorithm to perturb each share satisfies ε-LDP.
In the non-private scenario, each training samples participates
in several iterations. However, under the LDP protection,
reusing the perturbed training data continuously consumes the
privacy budget and ultimately leaves the data deanonymized.
More specifically, suppose the local share released by the data
owner in the i-th round satisfies εi-DP. By the composition
property of DP [26], if ε-DP is required to be enforced for the
data owner’s data, then it needs that

∑m
i εi ≤ ε. Considering

that the data owner participates in all m rounds, it becomes
εi = ε/m. Then the amount of the noise contributed by each
data owner becomes O(m

√
dlogd
ε ), which linearly depends on

m. Thus to reduce the injected noise, following the existing
studies [24], [27], each data owner only participates in at most
one round, i.e., at line 6 of Alg. 4, the data user randomly
selects a different subset of H data owners for training.

Depend on the specific classifier to boost, there are various
representations of the local share to contribute. To illustrate,
assuming the local share is a d-dimension vector, and ε is the
smallest privacy budget across all data owners. By aggregating
H perturbed local shares, the error of the estimated mean is
in O(

√
dlogd

ε
√
H

). It is clear that, with ε and d fixed, the larger H
is, the less noise is in the aggregation. Consequently, a small
H might result in overwhelming noise in the aggregation,
and the trained base learner might perform no better than
random guessing. In Section. IV, we will further demonstrate
the determination of H given a fixed privacy level ε.

3) One key step in boosting is to increase the weights of the
misclassified training samples for (m+1)-th iteration, which is
determined by αm. A native solution is to let the data owners
calculate the classification errors, i.e.,

∑
i wiI(yi 6= Tm(xi)),

and then submit the perturbed version to the data user. How-
ever, the perturbed classification errors result in a noisy αm
and intensify the utility loss of Tm. Thus to correctly adjust the
sample weights, we propose to let the data user use his local
copy as a validation set to derive αm, and then shares αm to all
data owners to update the weights. Although it was proposed
to address the overfitting issue, calculating the weights using a
validation set [28]–[30] has been introduced already. And we
also confirm the effectiveness of using the validation set in
the experiments. In particular, it should be noted that a valid
αm should be positive. If α ≤ 0, at line 15-17 of Alg. 4,
the data user simply drops the current iteration and selects

another H data owners to re-train Tm. This design ensures
that Tm performs better than random guessing.

E. Algorithm Convergence

Both AdaBoost [4] and SAMME [19] are proved to be
converged given the assumption that the base learner is better
than random guessing. The same assumption is also applied
to Alg. 4. The base learner is learned from the aggregated
perturbed local shares and the utility is affected by the privacy
budget ε and the number of participating data owners H . As
we explained above, the decision rules are different based
on the classifier to boost, and the same ε and H might
affect the utility of the base learner differently. Therefore,
we demonstrate the convergence conditions using 3 specific
boosted classifiers in Section IV.

IV. BOOSTED CLASSIFIERS

In this section, we introduce 3 boosted classifiers by extend-
ing Alg. 4. The local shares used to build the base learners
are different, which we categorize them as local sample,
local statistic and local classifier. Local sample is the atomic
representation of the data possessed by the data owner and
local classifier refers to a classifier that is fitted by the local
samples, which is represented by a vector of model parameters.
And the local statistic fills the gap between the two end
representations. The trade-off between the utility and privacy
level for each boosted classifier is presented as well.

A. Local Sample

Nearest Centroid Classifier (NCC) is a simple yet powerful
classifier, which makes prediction for an observation by as-
signing it the label of the class whose centroid is nearest.
Formally, given the training data {(xi, yi),xi ∈ Rd, yi ∈
{C1, C2, . . . , CK}}, µk is the centroid of class Ck and it is
computed as follows,

µk =
1

Nk

∑
i:yi=Ck

xi, (4)

where Nk is the number of samples that belong to class Ck.
Given an observation xt, the prediction is determined by the
`p distance to µk, i.e., ŷt = argmink ||xt−µk||p. In the paper,
we use `2 to measure the distance between the observation and
class centroids. In each iteration, the base NCC is trained by
the perturbed local samples shared by randomly selected data
owners. The execution of privacy-preserving boosted NCC is
presented in Alg. 5.

In Alg. 5, line 8 refers to the perturbation of local samples,
and the privacy budget εh is evenly split to all samples held by
the participating data owner, i.e., each data sample is assigned
εh/Nh privacy budget. Line 11 refers to the computation of
class centroids, where we use µ′k to distinguish it from the
true centroid µk that is computed using the non-perturbed
local samples, i.e., µk = 1

Nk

∑
i:yi=Ck

∑
h w

h
i · xhi . The

computation of wem, wsm, errm, αm at line 13 is same as
Alg. 4.
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Algorithm 5 Privacy-Preserving Boosted NCC

1: Input: {(X1, Y 1, ε1), . . . , (XL, Y L, εL), (Xu, Y u)}
2: for l=1:L do
3: Initialize the observation weights wli = 1/N l, i = 1 :

N l

4: end for
5: for m=1:M do
6: Data user randomly selects a distinct group of H data

owners
7: for h=1:H do
8: xh′i ← Alg. 3(xhi , ε

h/Nh), i = 1 : Nh

9: {(whi · xh
′

i , y
h
i ) : i = 1 : Nh} is submitted to the

Data User
10: end for
11: µ′k ← 1

Nk

∑
i:yi=Ck

∑
h w

h
i · xh′i , where Nk is the

number of samples that belong to class Ck
12: Tm(x)← argmink ||x− µ′k||2
13: Update wem, wsm, errm, αm
14: if αm ≤ 0 then
15: Go to line 6 and recompute Tm
16: end if
17: for l=1:L do
18: wli ← wli · exp(αm · I(yli 6= Tm(xli))), i = 1 : N l

19: end for
20: end for
21: return {(α1, T1(·)), . . . , (αm, Tm(·))}

To ensure the convergence of Alg. 5, the base NCC needs
to perform better than random guessing, which requires ||µi−
µ′i||2 ∈ O(||µi − µj ||2),∀i 6= j. Informally, ∀j 6= K,

Pr(||xt − µ′K ||2 < ||xt − µ′j ||2|yt = CK) >
1

K
(5)

⇒Pr(||xt − µK + µK − µ′K ||2 < ||xt − µK + µK − µj

+ µj − µ′j ||2|yt = CK) >
1

K
(6)

⇒Pr(||µK − µ′K ||2 < ||µK − µj + µj − µ′j ||2|yt = CK)

>
1

K
. (7)

Otherwise, the injected noise is overwhelming and the resulted
base NCC performs no better than random guessing.

B. Local Statistic

Another type of the classifier is trained by utilizing the
statistical information of the local samples, e.g., the decision
stump classifier (Equ.1), which is fitted by the aggregation of
the impurity measurements from data owners.

First, we introduce the training procedure of the DT by
utilizing the misclassification impurity. Assuming it’s a binary
classification problem and the attribute Aj contains the bi-
nary categorical values, the cross table of Aj is a statistical

summary and is represented by Sj =
(sj0,0 sj0,1
sj1,0 sj1,1

)
, where

sj0,1 denotes the weighted sum of examples whose Aj = 0
and belong to C1. The misclassification error impurity of the
Aj = 0 is defined as 1−max{sj0,0, s

j
0,1}/s

j
0, where sj0 is the

weighted sum of samples that Aj = 0 regardless the belonging
class. For Aj , maximizing its gain is equivalent to minimizing
the weighted sum of impurities [21]:

argmin
j

{ sj0
|Sj |

[
1−

max{sj0,0, s
j
0,1}

sj0

]
+

sj1
|Sj |

[
1−

max{sj1,0, s
j
1,1}

sj1

]}
⇐⇒ argmax

j
{|sj0,0 − s

j
0,1|+ |s

j
1,0 − s

j
1,1|}. (8)

For ease of explanation, we define φj = |sj0,0− s
j
0,1|+ |s

j
1,0−

sj1,1|, and Aj is the best attribute if it has the minimum classifi-
cation error impurity and φj is maximum correspondingly, i.e.,
|si0,0−si0,1|+ |si1,0−si1,1| ≤ |s

j
0,0−s

j
0,1|+ |s

j
1,0−s

j
1,1|,∀i 6= j.

To determine the attribute to split, the cross tables of all
attributes are perturbed and aggregated. More specifically,
for each data owner, (sj0,0 − sj0,1)′ and (sj1,0 − sj1,1)′ are
the perturbed values of (sj0,0 − sj0,1) and (sj1,0 − sj1,1); and

φ̄j
′

= |
∑
h(sj0,0−s

j
0,1)′

H |+ |
∑
h(sj1,0−s

j
1,1)′

H | is the aggregation of
H statistical summaries from the participating data owners in
each round. Consequently, Aj is the best attribute to split if
φ̄i
′
< φ̄j

′
,∀i 6= j. Alg. 6 presents the execution details.

Algorithm 6 Privacy-Preserving BDT

1: Input: {(X1, Y 1, ε1), . . . , (XL, Y L, εL), (Xu, Y u)}
2: for l=1:L do
3: Initialize the observation weights wli = 1/N l, i = 1 :

N l

4: end for
5: for m=1:M do
6: Data user randomly selects a distinct group of H data

owners
7: for h=1:H do
8: Sj ←

(sj0,0 sj0,1
sj1,0 sj1,1

)
, where sj0,1 denotes the sum of

weights of examples that have Aj = 0 and belong to
C1

9: ∆sh ← {(sj0,0 − s
j
0,1, s

j
1,0 − s

j
1,1), j = 1 : d}

10: ∆sh
′ ← Alg. 3(Flatten(∆sh), εh), F latten(∆sh) ∈

R2d

11: ∆sh
′

is submitted to the Data User
12: end for
13: φ̄j

′ ← |
∑
h[(sj0,0−s

j
0,1)′]

H |+ |
∑
h[(sj1,0−s

j
1,1)′]

H |, j = 1 : d

14: Tm ← f(x|j, η), given φ̄i
′
< φ̄j

′
,∀i 6= j

15: Update wem, wsm, errm, αm
16: if αm ≤ 0 then
17: Go to line 6 and recompute Tm
18: end if
19: for l=1:L do
20: wli ← wli · exp(αm · I(yli 6= Tm(xli))), i = 1 : N l

21: end for
22: end for
23: return {(α1, T1(·)), . . . , (αm, Tm(·))}

In line 10 of Alg. 6, the cross tables of d attributes are
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flattened and is composed as one vector, e.g., Flatten(∆sh) ∈
R2d. Then the vector is perturbed by Alg. 3 with εh, as it is
the only parameter vector transmitted to the data user, and the
perturbation makes statistic summaries indistinguishable from
each other.

Similar to Alg. 5, the convergence of Alg. 6 requires that
the probability of picking best feature is better than random
guessing for each decision stump, which implies that (φj −
φj ′) ∈ O(φi − φj),∀i 6= j. Such condition ensures that the
best feature can still be effectively selected in each round.

For the feature has continuous values, the splitting strategy
can be easily adapted. Assuming Ao represents a feature
that has continuous values, the data user pre-computes the
threshold η using his local dataset and shares η to data owners.
For the participating data owners, the cross table can be

computed based on η, where So =
(so<η,0 so<η,1
so≥η,0 so≥η,1

)
, so<η,1

denotes the weighted sum of samples with Ao < η and belong
to C1. Once the cross tables for all attributes are ready, the
calculation of the misclassification error impurity is same as
the treatment of the binary attribute described above.

Algorithm 7 Privacy-Preserving Boosted LR

1: Input: {(X1, Y 1, ε1), . . . , (XL, Y L, εL), (Xu, Y u)}
2: for l=1:L do
3: Initialize the observation weights wli = 1/N l, i = 1 :

N l

4: end for
5: for m=1:M do
6: Data user randomly selects a distinct group of H data

owners
7: for h=1:H do
8:

ˆ
θh ← argminθh

1
Nh

(
∑Nh

i=1 L(θh;whi ;xi
h; yhi ),

where L(θ;w;x; y) = −wylog(sigmoid(θTx)) −
w(1− y)(1− log(sigmoid(θTx))),θ ∈ Rd

9:
ˆ
θh
′
← Alg. 3(

ˆ
θh, εh)

10:
ˆ
θh
′

is submitted to the Data User
11: end for
12: θ′m ← 1

H

∑
h

ˆ
θh
′

13: Tm ← sigmoid(θ′
T
mx)

14: Update wem, wsm, errm, αm
15: if αm ≤ 0 then
16: Go to line 6 and recompute Tm
17: end if
18: for l=1:L do
19: wli ← wli · exp(αm · I(yli 6= Tm(xli))), i = 1 : N l

20: end for
21: end for
22: return {(α1, T1(·)), . . . , (αm, Tm(·))}

C. Local Classifier

The aggregation of local classifiers is a quite popular
approach in the literature [31]–[35]. In such scenario, the
data owner trains a classifier using his own local dataset and
the final classifier is constructed by aggregating the classifier

parameters from multiple data owners. Formally, assuming the
classifier is trained by optimizing the loss function L(·), where
the parameter vector θ of L(·) is estimated as:

θ̂ = argmin
θ

[
1

N
(

N∑
i=1

L(θ;wi;xi; yi)]. (9)

In our problem, ˆ
θh is the parameter of the local classifier

learned by data owner h, and the base learner in each iteration
is obtained by aggregating multiple perturbed ones:

θ′ =
1

H

∑
h

ˆ
θh
′
. (10)

Alg. 7 presents the execution details of boosting the logistic
regression classifier privately. θh is learned at line 8 and it is

perturbed at line 9, i.e., ˆ
θh
′

= Alg. 3(
ˆ
θh, εh). Similar to the

setting of local statistic, ˆ
θh is perturbed using budget εh and

the resulted model parameters are indistinguishable from the
data owners.

For multi-class classification problem, the one-versus-all
strategy is adopted for linear regression; and the performance
of the base learner should be better than 1/2 to allow Alg. 7
to converge, which implies sgn(θ′Tx) needs to same as
sgn(θTx).

The privacy protection of the local statistic and local
classifier is slightly different from the local sample scenario.
To train the boosted NCC, individual sample xhi in (Xh, Y h)
is perturbed by Alg. 3, which satisfies LDP. By receiving the
perturbed samples, the data user cannot distinguish whether
the true tuple is xhi or xh′i with high confidence. While for
BDT and boosted LR, the perturbation happens on either
the cross tables or the parameters of learned LR, which
are the functional outputs of (Xh, Y h). It can be proved
that Alg. 3 satisfies DP, for instance, assuming (Xh, Y h)
and (Xh, Y h)∗ are two neighboring datasets, f(·) refers to
the learned LR and g() refers to Alg. 3, it shows that
Pr[g(f((Xh, Y h)) ∈ O] ≤ eεPr[g(f((Xh, Y h)∗) ∈ O] by
the definition of LDP; and the sensitivity of f(·) is given by
||f(Xh, Y h) − f(Xh, Y h)∗||1 ≤ 2d, since f() is scaled to
[-1,1] [25].

V. EXPERIMENT

In this section, we evaluate the 3 proposed boosted clas-
sifiers in Section. IV. The utility of the boosted classifiers
are assessed in terms of prediction accuracy over the real
and synthetic datasets, i.e., the MNIST, Fashion-MNIST1, and
Brazil dataset. The descriptions of the datasets are given below,

The MNIST dataset contains 28× 28 grayscale images of
handwritten digits from 0 to 9, which has 60,000 samples
for training and 10,000 samples for testing. To have large
enough volume of samples for multi-round training, we apply
the random shifts and rotations from the Image Augmentation
API2 to enlarge the size of the training samples. Among all
digits, the confusable digit “4” and “9” are selected for binary

1https://github.com/zalandoresearch/fashion-mnist
2https://keras.io/api/preprocessing/image/
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classification in the experiment. For each class, we use 20,000
samples for training and 1,000 samples for evaluation, and
there are extra 1,000 samples reserved for the data user.

The Fashion-MNIST dataset contains the grayscale article
images of 10 classes. The dataset is intended to replace
the overused MNIST dataset, and it shares the same image
size and structure as the MNIST dataset. Similar to MNIST
augmentation, we enlarge the size of training images and
pick the confusable class “T-shirt/top” and “shirt” for binary
classification. For each class, we use 20,000 samples for
training and 1,000 samples for evaluation, and there are extra
1,000 samples reserved for the data user.

The Brazil dataset contains the census records in Brazil
between 1970 and 2010, which are from the Integrated Public
Use Microdata Series [36] (IPUMS). The dataset has 10
attributes, 2 of them are numerical (e.g., age and totalIncome)
and the rest of them are categorical. In the experiment, the
totalIncome is used as the dependent variable and is converted
to binary attribute by mapping the value larger than mean value
to 1, and 0 otherwise [25]. The categorical attributes with k
distinct values are transformed to k-1 binary attributes. After
the transformation, the dimension of the dataset becomes 67.
We use 12×106 samples for training and 2×106 samples for
evaluation, and there are 100,000 samples reserved for the data
user.

The synthetic dataset is generated using the scikit-learn3

API, which contains 2 classes and 20 real-valued attributes;
10 of them are the meaningful attributes, the rest of them
are generated as non-informative features that are the linear
combinations of the 10 meaningful ones. There are 106

samples generated in total and the number of positive samples
is equal to the negative samples. In the experiment, 75% of
samples are used for training and 20% are used for testing,
the other 5% samples are reserved for the data user.

For a better study of the trade-off between the utility and
privacy, we implement the boosted classifiers with two other
perturbation methods, i.e., Laplace mechanism [37] and Duchi
et al.’s mechanism. The Laplace mechanism perturbs the single
numerical value by adding a random value from Lap(0, 2/ε),
where Lap(µ, λ) follows a Laplace distribution that has 0
mean and scale λ. The estimated mean of n perturbed values
is unbiased and the error is in 1

ε
√
n

. However, to perturb
multiple attributes, all attributes have to evenly share the total
budget ε, and the error of the estimated mean of the multi-
dimensional vector is super-linear to d. Duchi et al. proposed
a solution to perturb multiple numerical attributes [24], which
is also asymptotically optimal but has a larger constant than
Alg. 3. For consistency, the term Laplace is referred to the
Laplace mechanism, the term Duchi is referred to the Duchi
et al.’s mechanism and PM is referred to Alg. 3. For each
boosted classifier, we prefix the perturbation method with
classifier for easy interpretation, e.g., Lap-NCC refers to the
NCC that is trained by the samples perturbed by the Laplace
mechanism, and PM-BDT refers to the BDT trained by the
samples perturbed by PM. In the experiment, we further

3https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.make classification.html

assume that the same privacy budget is assigned to all
data owners.

Given the fixed privacy budget, the larger dimension of the
dataset is, the more noise is resulted in. To study the utility
impact of the number of dimensions, the MNIST and Fashion-
MNIST dataset are transformed to the histogram frequency.
More specifically, the Histogram of Oriented Gradients (HOG)
descriptors are first computed from the image dataset, which
provides the histograms of directions of gradients that are
used to capture the edges and corners of an image. A Bag of
Visual Words (BOVW) model is then associated with the HOG
descriptors, where the K-Means clustering is performed over
the generated descriptors and the center of clusters are treated
as the visual dictionary’s vocabularies. Finally, the histogram
of frequency is calculated for each visual word, and the
image is transformed to the histogram representation. By using
BOVW, we have the flexibility to decide the number of visual
vocabularies, in our experiment, the MNIST is transformed
to 50 dimensions and Fashion-MNIST is transformed to
100 dimensions.

To measure the classification accuracy, we calculate the ac-
curacy and misclassification rate for base learners and boosted
classifiers, i.e.,

accuracy =
TP + TN

TP + TN + FP + FN
, (11)

misclassification rate = 1− accuracy, (12)

where TP refers to True Positive, TN refers to True Negative,
FP refers to False Positive and FN refers to False Negative.

A. Boosted Nearest Centroid Classifier

The privacy-preserving boosted NCC is evaluated over
the MNIST, Fashion-MNIST and the synthetic dataset. For
MNIST and Fashion-MNIST, we simulate 1,000 data owners
to participate in each iteration and assign 4 samples to each
data owner. For the synthetic dataset, we simulate 2,000 data
owners in each round and assign 4 samples to each data
owner. In Alg. 5, the class centroids are computed via the
collected perturbed local samples from the participating data
owners, and the estimated error is in O(

√
dlogd

ε
√∑

hN
h

), where

d is the dimension of the data, ε is the privacy budget
for a single sample and

∑
hN

h is the number of collected
training samples in one round, for MNIST, d = 50 and∑
hN

h = 4, 000. Fig. 2 shows the classification accuracy of
the first base NCC under various privacy budgets, note that the
ε in the x-axis denotes the privacy budget assigned for each
data owner, and the local samples split the privacy budget
equally, e.g., each sample receives ε/4 budget since there are
4 samples possessed by each data owner. In Fig. 2, for all 3
datasets, PM-NCC has the highest accuracies for each privacy
level, which indicates PM-NCC preserves the most utility
comparing to 2 other perturbation methods. It also shows that
when ε is small, e.g., ε = 1.0, PM-NCC and Duchi-NCC
perform no better than random guessing, i.e., the accuracies in
average are about 0.5; and the accuracies of both base learners
increase as the privacy budgets become larger. The pattern is
as expected, since the error of the centroids estimation, i.e.,



9

1.0 3.0 5.0 7.0 9.0
ε

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

NCC
PM
Duchi
Laplace

(a) MNIST

1.0 3.0 5.0 7.0 9.0
ε

45%

50%

55%

60%

65%

70%

75%

80%

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

NCC
PM
Duchi
Laplace

(b) Fashion-MNIST

1.0 3.0 5.0 7.0 9.0
ε

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

NCC
PM
Duchi
Laplace

(c) Synthetic

Fig. 2: Classification accuracy of the first NCC base learner w.r.t. various privacy budgets. For MNIST and Fashion-MNIST,
there are 1,000 data owners participated in a single round and each data owner holds 4 samples. For synthetic dataset, there are
2,000 data owners in a single round and each data owner holds 4 samples. For MNIST and Fashion-MNIST, the non-private
NCC classification accuracies are 91%; for the synthetic dataset, the non-private NCC classification accuracy is 87%.

TABLE II: `2p of the first iteration of Lap-NCC, Duchi-NCC and PM-NCC respectively. The `2b of MNIST is 1.01; The `2b of
Fashion-MNIST is 1.12; The `2b of the synthetic dataset is 0.5. The smallest `2p is highlighted in bold for each dataset.

Perturbation
ε 1.0 3.0 5.0 7.0 9.0

MNIST
Laplace 88.950 + 6.466 28.310 + 1.653 17.623 + 1.235 12.504 + 0.897 9.866 + 0.856
Duchi 33.625 + 1.259 9.501 + 0.335 4.899 + 0.084 3.136 + 0.164 2.247 + 0.084
PM 14.088 + 0.878 4.518 + 0.210 2.965 + 0.129 2.449 + 0.140 2.111 + 0.106

Fashion-MNIST
Laplace 256.974 + 15.871 82.804 + 4.038 50.814 + 2.293 35.740 + 1.439 27.713 + 1.256
Duchi 51.749 + 1.507 15.223 + 0.330 8.096 + 0.350 5.166 + 0.126 3.995 + 0.213
PM 24.850 + 1.349 8.575 + 0.412 5.451 + 0.344 4.383 + 0.155 3.910 + 0.178

Synthetic
Laplace 15.681 + 1.375 5.314 + 0.471 3.230 + 0.354 2.464 + 0.214 1.904 + 0.133
Duchi 3.905 + 0.353 1.307 + 0.158 0.927 + 0.077 0.650 + 0.066 0.594 + 0.045
PM 3.266 + 0.305 0.970 + 0.069 0.553 + 0.060 0.372 + 0.042 0.268 + 0.034

||µk − µ′k||2, becomes smaller as ε becomes larger. To better
illustrate the point, Table. II presents the estimated error for
all privacy levels.

To recap, we use `2b to represent the distance between the
true centroids of classes, i.e., `2b = ||µ0 − µ1||2, and `2b is
fixed for a given dataset. Similarly, we use `2p to represent
the distance between the true centroids and the perturbed
ones, i.e., `2p = ||µ0−µ

′
0||2+||µ1−µ

′
1||2

2 , and Table. II presents
the averaged `2p for all privacy levels in 10 runs. For MNIST,
the `2b is about 1.01, and the PM-NCC consistently has the
smallest `2p compared to 2 other perturbation methods across
all privacy levels, i.e., `2p of Lap-NCC is about 6 times
larger than PM-NCC, and `2p of Duchi-NCC is nearly 2 times
larger than PM-NCC when ε = 1.0. However, given the
smallest ε(i.e.,ε =1.0), `2p of PM-NCC is about 14.09, which
is significantly greater than 1.01, which implies that the noise
dominates the base learner and the output of the base learner
is like random guessing. As ε increases, `2p drops quickly,
and the classification accuracy gets improved. Even though
`2p(i.e.,`2p ≈ 2.97) is not strictly less than `2b when ε = 5.0, it
can be seen that the accuracy is about 70% while the variance
is still large. As we explained in Section. IV-A, the base NCC
learned at this privacy level should be able to converge and we
confirm it in the next experiments. For the synthetic dataset,
`2b = 0.5 and `2p ≤ 0.372 when ε ≥ 7.0, and the accuracy of
PM-NCC is almost identical to the non-private learner and it
implies that the noise is small enough and it doesn’t affect the
utility the learner.
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Fig. 3: NCC classification accuracy & `2p w.r.t. various num-
bers of data owners in MNIST, where each data owner holds
4 samples and ε =5.0.

In the aggregation, the more data owners participate, the
more perturbed samples are collected and the less noise would
be. To illustrate this point, Fig. 3 presents the classification
accuracy and `2p in terms of various amounts of data owners
in MNIST. The left y-axis indicates the classification accuracy
and the right y-axis shows `2p. In Fig. 3, the privacy level is
fixed at 5.0, and it is readily to see the improvement of accu-
racy by increasing the number of data owners (resp. number
of perturbed samples) from 100 (resp. 400) to 1000 (resp.
4000), which shows the rough lower bound of the number
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Fig. 4: Boosted PM-NCC misclassification rate w.r.t. various numbers of base learners. For both MNIST and Fashion-MNIST,
there are 1,000 distinct data owners participating in each round and each data owner holds 4 samples, and the PM-NCC is
boosted in 10 rounds in total. For synthetic dataset, there are 2,000 distinct data owners participating in each round and each
data owner holds 4 samples.
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Fig. 5: PM-NCC αm and errm w.r.t. the number of base learners. For all 3 datasets, the PM-NCC is boosted in 10 iterations,
and the variance is omitted from the figure.

of needed samples to make PM-NCC beat random guessing.
For the computation complexity, there are Nh × H samples
collected in one round and the perturbation of each sample has
the complexity of O(d), thus the overall computation cost in
one round is in O(NhHd). Comparing Duchi-NCC to PM-
NCC, it shows that PM-NCC consistently has a lower `2p
than Duchi-NCC, even though their errors are close to each
other. Combining Fig. 3 with Table. II, it implies that both
perturbation methods are asymptotically similar while the error
bound of Duchi has a larger constant than PM.

After studying the performance of a single base learner, the
PM-NCC is boosted in multiple iterations. In the experiment,
there are 1,000 data owners in each iteration, and PM-NCC is
boosted in 10 iterations. The misclassification rate is plotted
in Fig. 4. The non-private NCC is also boosted in 10 iterations
and the result confirms the improved classification perfor-
mance of boosted NCC. For MNIST, the misclassification
rate of the non-private boosted NCC is reduced from 9%
to 4%; for Fashion-MNIST, the misclassification rate of the
non-private boosted NCC is reduced from 11% to 5%; for
the synthetic dataset, the misclassification rate of the non-
private version is reduced from 13% to 9%. As analyzed in
Section. IV-A, Alg. 5 is able to converge only if the base

learner performs better than random guessing. From Fig. 2, we
can roughly observe the minimum privacy budget to satisfy
this assumption for each dataset, for instance, for MNIST,
given the fixed number of perturbed samples, the accuracy
of the PM-BNCC is about 70% when ε = 5.0. Thus for each
dataset, we select the privacy budgets which ensures that the
classification accuracy of base NCC is above 50%. In Fig. 4,
for MNIST, the misclassification rate of PM-BNCC is reduced
from 37% (resp. 30%) to 17% (resp. 9%) when ε = 5.0 (resp.
7.0); similarly, for Fashion-MNIST, the misclassification rate
is reduced from 39% (resp. 37%) to 19% (resp. 20%) at ε =
7.0 (resp. 9.0), and the performances are close under 2 privacy
levels. For the synthetic dataset, the misclassification rate is
reduced from 19% (resp. 17%) to 14% (resp. 12%) given ε =
5.0 (resp. 7.0). In general, it shows that the performance of the
PM-BNCC get improved when the privacy levels are relaxed,
which is due to the reduced noise in the estimated mean.
To have a view of the convergence speed, Fig. 5 plots the
weight(αm) and error rate(errm) of each base NCC, which are
referred at line 13 in Alg. 5. For MNIST and Fashion-MNIST,
the errm of PM-NCC gradually increases from 0.2 to 0.5 in 8
iterations; in the meanwhile, the corresponding αm gradually
decreases to 0, which implies that more iterations would add
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Fig. 6: Decision stump (DT) classification accuracy w.r.t. various privacy budgets. For MNIST and Fashion-MNIST, there are
200 data owners participated in a single round and each data owner holds 20 samples. For Synthetic dataset, there are 1,000
data owners participated in a single round and each data owner holds 80 samples.

TABLE III: ∆pim for all 3 perturbation methods. The ∆im of MNIST is 0.2, ∆im of Fashion-MNIST is 0.17 and the ∆im of
the synthetic dataset is 0.3. The smallest ∆pim is highlighted in bold for each dataset.

Perturbation
ε 1.0 3.0 5.0 7.0 9.0

MNIST
Laplace 1290.09 + 242.05 141.96 + 18.39 47.95 + 6.54 26.18 + 2.82 14.58 + 1.95
Duchi 12.24 + 1.86 3.03 + 0.60 2.56 + 0.43 2.34 + 0.29 2.40 + 0.50
PM 5.32 + 1.06 0.27 + 0.05 0.22 + 0.02 0.20 + 0.02 0.18 + 0.02

Fashion-MNIST
Laplace 5613.86 + 539.39 559.66 + 69.57 200.22 + 19.55 103.88 + 8.77 60.32 + 5.97
Duchi 25.13 + 2.18 6.03 + 0.37 5.24 + 0.55 4.99 + 0.51 5.25 + 0.51
PM 10.71 + 0.97 0.63 + 0.08 0.48 + 0.06 0.22 + 0.03 0.19 + 0.01

Synthetic
Laplace 36.76 + 8.86 3.53 + 0.91 1.06 + 0.30 0.53 + 0.09 0.21 + 0.05
Duchi 0.81 + 0.28 0.23 + 0.07 0.18 + 0.03 0.15 + 0.04 0.13 + 0.04
PM 0.807 + 0.213 0.029 + 0.008 0.037 + 0.007 0.013 + 0.002 0.013 + 0.004

neutral gains. For the synthetic dataset, it shows that the PM-
BNCC has an almost identical converging speed to non-private
BNCC, which confirms that the PM-NCC effectively maintains
the prediction capacity at the given privacy level (ε ≥ 5.0).

B. Boosted Decision Tree

The evaluation of the BDT classifier is performed over
the MNIST, Fashion-MNIST and the synthetic dataset. For
MNIST and Fashion-MNIST, there are 200 data owners
participated in a single round and each data owner holds 20
samples; for the synthetic dataset, there are 1,000 data owners
participated in a single round and each data owner holds 80
samples. In each round, the best feature to split is determined
by the aggregated misclassification error impurities. The
overwhelming noise in the perturbed cross tables could
disturb the aggregated impurities and return a random feature
instead. As we analyzed in Section. IV-B, to ensure the
true best feature to be decided, the injected noise should
small enough to not disturb the order of the impurities, i.e.,
(|sj0,0−s

j
0,1|+|s

j
1,0−s

j
1,1|)−(|(sj0,0−s

j
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For better illustration, we define the ∆im as the
averaged difference of impurities between any 2 features,
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∑
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,

where i, j indicates ith and jth feature, and
d is the number of features, and ∆pim =∑d
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d .
Table. III presents ∆pim across various privacy levels,

and the classification accuracy of the first DT is given in
Fig. 6.

For MNIST and Fashion-MNIST, ∆im is around 0.2 and
0.17 respectively. In Table. III, ∆pim of Lap-DT and Duchi-
DT are both overwhelming even when ε = 9.0 such that
the true best feature is hardly estimated, that’s why the
classification accuracy is similar to random guessing across
all privacy levels. For MNIST, ∆pim of PM-DT approximates
to ∆im when ε ≥ 5.0, and the probability to return the true
best feature increases accordingly; for Fashion-MNIST, the
∆pim of PM-DT approximates to ∆im when ε ≥ 9.0, thus its
classification accuracy doesn’t beat random guessing signifi-
cantly. For MNIST and Fashion-MNIST, there is a relatively
large variance observed for the estimated accuracy of PM-DT
in Fig. 6 and it is as expected. The reason is that the error in
the aggregation of cross tables leads to a random feature to be
split, and the accuracy of the PM-DT learned by such random
feature is most likely around 0.5. For the synthetic dataset, the
∆pim of Duchi-DT and PM-DT are smaller than ∆im when
ε ≥ 3.0, and the classification accuracies are quite stable and
close approximate to the measurement of non-private DT. It
is observed that the value of ∆pim has a fluctuation in the
experiment, e.g., ∆pim doesn’t change significantly when ε is
increased from 3.0 (resp. 7.0) to 5.0 (resp. 9.0).

The PM-BDT is trained with 10 decision stumps and the
misclassification rate is presented in Fig. 7. For MNIST, the
misclassification rate of the non-private BDT is reduced from
14% to 7%, and the misclassification rate of PM-BDT is
reduced from 34% (resp. 19%) to 13% (resp. 9%) when ε =



12

1 2 3 4 5 6 7 8 9 10
#.Base Learner

0%
5%

10%
15%
20%
25%
30%
35%
40%

M
isc

la
ss

ifi
ca

tio
n 

Ra
te

BDT
ε=5.0
ε=7.0
non-LDP

(a) MNIST

1 2 3 4 5 6 7 8 9 10
#.Base Learner

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

M
isc

la
ss

ifi
ca

tio
n 

Ra
te

BDT
ε=7.0
ε=9.0
non-LDP

(b) Fashion-MNIST

1 2 3 4 5 6 7 8 9 10
#.Base Learner

0%

5%

10%

15%

20%

25%

30%

35%

M
isc

la
ss

ifi
ca

tio
n 

Ra
te

BDT
ε=5.0
ε=7.0
non-LDP

(c) Synthetic

Fig. 7: PM-BDT misclassification rate w.r.t. the number of decision stumps. For all 3 datasets, the PM-BDT is composed with
10 decision stumps.
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Fig. 8: PM-BDT αm and errm w.r.t. the number of decision stumps. For all 3 datasets, the PM-BDT is trained with 10 decision
stumps, and the variance is omitted from the figure.

5.0 (resp. 7.0), and the performance is close to the non-private
BDT when ε = 7.0. For Fashion-MNIST, the misclassification
rate of PM-BDT is reduced from 40% (resp. 34%) to 18%
(resp. 19%) when ε = 7.0 (resp. 9.0). For the synthetic dataset,
the misclassification rate of PM-BDT is close to the non-
private BDT when ε ≥ 5.0, which is reduced from 30% to 19%
with 10 DTs. For the MNIST and Fashion-MNIST dataset, it
can be seen that the performance of PM-BDT get improved
as the privacy levels are relaxed, the reason is that the noise is
reduced in the aggregated cross tables and it results in a higher
chance of returning the true best feature. The convergence
speed is also studied in terms of the base learner weight(αm)
and error rates, and the values are plotted in Fig. 8. For the
MNIST, the errm of PM-BDT grows from 0.2 to 0.35 in 7
rounds. For Fashion-MNIST, the errm grows from 0.33 to
0.4 in 10 rounds. For the synthetic dataset, the errm grows
from 0.31 to 0.39 in 10 rounds. For all 3 dataset, the αm and
errm of PM-BDT are actually quite close to non-private BDT,
especially for the synthetic dataset, which confirms that PM-
BDT maintains a good utility under different privacy level.
Furthermore, the αm of both PM-BDT and non-private BDT
are not close to 0 after 10 iterations, which indicates that the
accuracy might be improved by adding more decision stumps.

C. Boosted Logistic Regression Classifier

The evaluation of the boosted LR is performed over the
MNIST, Fashion-MNIST and Brazil datasets. The local LR
is firstly fitted by the participated data owners, and the
parameters of the base LR are the estimated mean of the
perturbed local LR parameters. Fig. 9 presents the classifi-
cation performance of the first base LR under various privacy
budgets. And to explain the classification performance, we
compare the square root of the average of squared errors, i.e.,

RMSEθ =

√∑
i(θi−θ′i)2
d , to the dot product of θ and the

unit vector, i.e., ||θ||1. The prediction of LR is determined
by sgn(θTx), and the utility of the base LR is maintained
if sgn(θ′

T
x) is same as sgn(θTx). We hypothesize that

θ′
T
x and θTx will have the same sign if RMSEθ < ||θ||1.

Table. IV gives the RMSEθ for various privacy levels. For
MNIST, the RMSEθ of PM-LR is close to ||θ||1 when ε ≥
3.0, and it is observed that the accuracy of PM-LR is closed
to non-private LR at the same privacy level in Fig. 9. For the
Brazil dataset, due to the large number of participating data
owners in each round, RMSEθ of Duchi-LR and PM-LR are
far less than ||θ||1 when ε ≥ 3.0, and it can be seen that
their prediction capacities are almost same as the non-private
LR. It’s also observed that RMSEθ of Duchi-LR starts to
converge when ε = 3.0, and RMSEθ of PM-LR has a similar
fluctuation when ε grows from 3.0 (resp. 7.0) to 5.0 (resp.
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Fig. 9: The base LR classification accuracy w.r.t. various privacy budgets, the blue horizontal dot line gives the classification
accuracy of the non-private LR. For MNIST and Fashion-MNIST, there are 100 data owners participating in each round and
each data owner holds 40 samples. For Brazil, there are 10,000 data owners participating in each round and each data owner
holds 100 samples.

TABLE IV: RMSEθ of the aggregation of the perturbed LR parameters in terms of Laplace, Duchi and PM respectively. The
||θ||1 of MNIST is 0.43, the ||θ||1 of Fashion-MNIST is 0.71, and the ||θ||1 of Brazil is 0.22.

Perturbation
ε 1.0 3.0 5.0 7.0 9.0

MNIST
Laplace 518.3575 + 90.0363 58.0616 + 4.3229 21.6944 + 2.4638 11.7771 + 2.2048 7.0411 + 1.3191
Duchi 11.8556 + 2.5871 2.9711 + 0.4087 2.8311 + 0.4233 2.8072 + 0.3401 2.7251 + 0.4631
PM 5.2721 + 0.9986 0.4872 + 0.1812 0.3388 + 0.0652 0.1703 + 0.0390 0.1483 + 0.0349

Fashion-MNIST
Laplace 270.5490 + 52.7679 30.7099 + 5.1766 10.9630 + 1.7186 5.9292 + 1.0899 3.6319 + 0.6998
Duchi 7.2207 + 1.2067 1.9912 + 0.2762 1.5668 + 0.2830 1.5195 + 0.2493 1.4536 + 0.4074
PM 3.1646 + 0.7951 0.3595 + 0.1080 0.2461 + 0.0419 0.1183 + 0.0215 0.1091 + 0.0244

Brazil
Laplace 11.9691 + 1.3442 1.2872 + 0.1661 0.5361 + 0.0904 0.2347 + 0.0295 0.1658 + 0.0286
Duchi 0.1616 + 0.0227 0.0436 + 0.0070 0.0377 + 0.0075 0.0400 + 0.0059 0.0372 + 0.0027
PM 0.2050 + 0.0200 0.0100 + 0.0021 0.0105 + 0.0024 0.0034 + 0.0012 0.0043 + 0.0006

9.0). The experiments above demonstrate the utility of the base
classifier in one round of Alg. 7, however we didn’t observe
accuracy improvements by boosting LR classifiers. It is also
observed that the decision boundaries of LRs are barely shifted
as the learned coefficients don’t change across iterations.

Among 3 boosted classifiers, for MNIST dataset, comparing
PM-LR to PM-NCC and PM-DT, it shows that PM-LR is able
to maintain a good classification accuracy(i.e., 75%) when
ε = 1.0, while both PM-NCC and PM-DT are dominated
by the noise and performs like random guessing at the same
privacy level. However, as the privacy level is relaxed, the
classification accuracies of the PM-BNCC and PM-BDT can
be improved significantly, for instance, when ε = 7.0, the
accuracy of PM-BNNC is improved to 88% in 10 iterations,
and PM-BDT is improved to 91%. For the Fashion-MNIST,
it shows a similar pattern for the 3 boosted classifiers, when
ε = 9.0, the accuracy of PM-BNCC is improved to 79% in 10
iterations, the accuracy of the PM-BDT is improved to 78%,
and the accuracy of PM-LR is about 78%.

VI. RELATED WORK

Differentially private boosting algorithm received sev-
eral studies recently. Liu et al. [15] propose to train the
differentially-private decision tree based on the noisy maximal
vote. CART-DPsAdaBoost [35] is a AdaBoost algorithm that
satisfies ε-DP, which iteratively trains the decision stumps and
adds Laplace noise in the leaf nodes. Li et al. [17] optimize the
privacy budget allocation and improve the classification accu-

racy of the private Gradient Boosting Decision Tree (GBDT)
model. However, the work introduced above assumes the data
is already collected, which doesn’t face the privacy challenge
of sharing information among multiple data parties. To address
the exact challenge, Zhao et al. [16] propose a GBDT that
privately ensembles trees trained by multiple data owners and
satisfies differential privacy. Although the distributed training
algorithm satisfies strong privacy guarantee, it suffers from
an accuracy loss due to the loose sensitivity bound and large
noise incurred by the Laplace mechanism. Xiang et al. [34]
propose a collaborative ensemble learning framework and
design both differentially private random forest (CRFsDP) and
adaptive boosting (CAdaBoostDP) algorithms. It should be
noted that CAdaBoostDP and the proposed Alg. 4 in this
paper have a similar implementation, however, one concern
of CAdaBoostDP is that the integration of multiple local trees
is not differentially private. In detail, each data owner sends
the prediction accuracy of the local learner and the number of
samples to the central agent to compute the weight for each
local tree. Although the author argues that SMC is able to hide
the plaintext of the message, it is orthogonal to the differential
privacy protection.

Local Differential Privacy (LDP) is proposed by Duchi et al.
[14] to prevent the information leakage in user level. Several
data mining and machine learning algorithms that satisfy
LDP are proposed, e.g., probability distribution estimation
[38], [39], frequent itemset mining [40], Bayes learning [41]
and clustering [42]. Wang et al. [25] propose a piecewise
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mechanism for multi-dimension numerical attributes pertur-
bation and use it to update the gradient across data parities.
Another client-server machine learning framework is designed
for Generalized Linear models [43], where the client perturbs
the parameters of the updated local model to satisfy ε-LDP and
shared the perturbed model with the server. Similarly, Zhang
et al. [44] propose a solution for multi-party deep learning,
where the local gradients are enforced by ε-LDP. In this paper,
we are interested in proposing a general privacy-preserving
framework for boosting and supports the type of classifiers
which is hardly trained by the SGD approach.

Federated learning [45] trains a machine learning model
by utilizing the dataset held in multiple de-centralized edge
devices, and it is assumed that the local datasets are not
necessarily identically distributed. Compared to our problem
setting, federated learning has a sound property of hiding
the local samples, e.g., the participants are able to share the
model parameters rather than the true data samples, which
alleviates the risk of privacy leakage. However, as some recent
study shows, federated learning is still facing critical privacy
issues without proper protection, for instance, Melis et al. [46]
introduce the inference attacks in federated learning, where an
adversarial participant is able to infer the existence of some
exact data points in other participants’ training sets. Such
attack confirms that the privacy protection is orthogonal to
the federated learning. Most recently, Wei et al. [47] propose a
noising before model aggregation (NbAFL) federated learning
framework, which satisfies ε-DP by adopting the Gaussian-
based mechanism. Since federated learning averages weights
from local models for iterative training, a naive solution is to
directly perturb weights before averaging. However, the DNN
usually has a large volume of trainable parameters, e.g., there
are nearly 200K parameters in a 2NN multi-layer perceptron
[45]. In our experiment, we tried to perturb the local weights of
the 2NN using Alg. 3, while the error is extreme large even by
assigning 10K privacy budget for a single participant. On the
other hand, the federated learning is also robust on unbalanced
and non-IID input, and our proposed boosting algorithm has
the same property assuming the base learner is trained by
aggregating local samples.

VII. CONCLUSION

In this paper, we proposed a privacy-preserving boosting
algorithm in the distributed setting, where an untrustworthy
data user intends to learn a boosted classifier from multiple
data parties. The proposed algorithm satisfied Local Differ-
ential Privacy (LDP) by only utilizing the perturbed local
shares from data owners, while the true values of training
samples never leave data owners’ hands. The state-of-art
private boosting algorithms mostly study certain classifiers,
e.g., Boosted Decision Tree (BDT) and Gradient Boosting
Decision Tree (GBDT). In contrast, our proposed boosting
algorithm is generalized and able to support different types
of classifiers. For instance, we implemented a private boosted
Nearest Centroid Classifier by utilization the aggregation of
the perturbed local samples, and a private BDT classifier by
using the aggregation of the perturbed local statistics. We

also demonstrated the perturbation of the Logistic Regression
classifier. In the experiment, we implemented all 3 boosted
classifiers and analyzed their classification performances over
several real and synthetic datasets. The result showed that the
privacy-preserving boosted classifiers effectively maintained a
superior utility. As the LDP allows the perturbation happens
on the data sample level, it provides a great flexibility for
different machine learning algorithms. For the future work, one
direction is to develop other boosting algorithms that satisfy
LDP, like stochastic gradient boosting; another direction is to
extend the work to the non-IID data setting.
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