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a b s t r a c t 

Protecting sensitive information against data exploiting attacks is an emerging research area in data min- 

ing. Over the past, several different methods have been introduced to protect individual privacy from 

such attacks while maximizing data-utility of the application. However, these existing techniques are not 

sufficient to effectively protect data owner privacy, especially in the scenarios that utilize visualizable 

data (e.g. images, videos) or the applications that require heavy computations for implementation. To 

address these problems, we propose a new dimension reduction-based method for privacy preservation. 

Our method generates dimension-reduced data for performing machine learning tasks and prevents a 

strong adversary from reconstructing the original data. We first introduce a theoretical approach to eval- 

uate dimension reduction-based privacy preserving mechanisms, then propose a non-linear dimension 

reduction framework motivated by state-of-the-art neural network structures for privacy preservation. 

We conducted experiments over three different face image datasets (AT&T, YaleB, and CelebA), and the 

results show that when the number of dimensions is reduced to seven, we can achieve the accuracies of 

79%, 80%, and 73% respectively and the reconstructed images are not recognizable to naked human eyes. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Machine Learning (ML) is an important aspect of modern ap-

plications that rely on big data analytics (e.g., an on-line system

collecting data from multiple data owners). However, these appli-

cations are progressively raising many different privacy issues as

they collect different types of data on a daily basis. For exam-

ple, many types of data are being collected in smart cities such as

patient records, salary information, biological characteristics, Inter-

net access history, personal images and so on. These types of data

then can be widely used in daily recommendation systems, busi-

ness data analysis, or disease prediction systems which in turn af-

fect the privacy of individuals who contributed their sensitive data.

Considering a multi-level access control system of a company using

biometric recognition (e.g., face recognition, fingerprint) for grant-

ing permission to access data resources, the company staff mem-

bers may concern their biological information being vulnerable to

adversaries. Even though the utility of these biometric features can

be effectively used in machine learning tasks for authentication

purpose, leaking this information might lead to privacy breaches.
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or example, an adversary could utilize them to determine the

embers’ identities. 

Several tools and methods have been developed to preserve the

rivacy in machine learning applications, such as homomorphic

ncryption [1–3] , secure multi-party computing [4,5] , differential

rivacy (DP) [6–10] , compressive privacy [11–17] and so on. Typ-

cally, differential privacy-based methods aim at preventing leak-

ng individual information caused by queries. However, they are

ot designed to serve large number of queries since they require

dding huge amount of noise to preserve privacy, thus significantly

ecreasing the ability to learn meaningful information from data.

n the other hand, homomorphic encryption-based methods can

e used to privately evaluate a function over encrypted data by a

hird party without accessing to plain-text data, hence the privacy

f data owners can be protected. However, due to the high com-

utational cost and time consumption, they may not work with a

ery large dataset, normally required in ML applications. 

In this study, we consider an access control system collect-

ng dimension-reduced face images of staff members to perform

uthentication task and to provide permission for members who

ould like to access company’s data resources ( Fig. 1 ). We propose

 non-linear dimension reduction framework to decrease data di-

ension for the authentication purpose mentioned above and to

rotect against an adversary from reconstructing member images.

irstly, we introduce ε-DR Privacy as a theoretical tool for dimen-

ion reduction privacy evaluation. It evaluates the reconstruction

https://doi.org/10.1016/j.neucom.2019.12.002
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Fig. 1. Attack model. 
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istance between original data and reconstructed data of a dimen-

ion reduction (DR) mechanism. This approach encourages a DR

echanism to enlarge the distance as high distance yields high

evel of privacy. While other methods such as differential privacy-

ased methods rely on inference uncertainty to protect sensitive

ata, ε-DR Privacy is built on reconstruction error to evaluate pri-

acy. Therefore, unlike differential privacy methods, ε-DR Privacy is

ot negatively impacted by the number of queries. Secondly, as de-

ailed in Section 3 , we recommend a privacy-preserving framework

utoencoder Generative Adversarial Nets-based Dimension Reduc- 

ion Privacy (AutoGAN-DRP) for enhancing data owner privacy and

reserving data utility. The utility herein is evaluated via machine

earning task performance (e.g., classification accuracy). 

Our dimension reduction (DR) framework can be applied to dif-

erent types of data and used in several practical applications with-

ut heavy computation of encryption and impact of query number.

he proposed framework can be applied directly to the access con-

rol system mentioned above. More elaboratively, face images are

ocally collected, nonlinearly compressed to achieve DR, and sent

o the authentication center. The server then performs classifica-

ion tasks on the dimension-reduced data. We assume the authen-

ication server is semi-honest, that is to say it does not deviate

rom authenticating protocols while being curious about a specific

ember’s identity. Our DR framework is designed to resist against

econstruction attacks from a strong adversary who obtains the

raining dataset and the transformation model. 

During the stage of experiments, we implemented our frame-

ork to evaluate dimension-reduced data in terms of accuracy of

he classification tasks, and we attempted to reconstruct original

mages to examine the capacity of adversaries. We performed sev-

ral experiments on three facial image datasets in both gray-scale

nd color, i.e., the Extended Yale Face Database B [18] , AT & T [19] , and

elebFaces Attributes Dataset (CelebA) [20] . The experiment results

llustrate that with only seven reduced dimensions our method

an achieve accuracies of 93%, 90%, and 80% for AT&T, YaleB, and

elebA respectively. Further, our experiments show that at the ac-

uracies of 79%, 80% and 73% respectively, the reconstructed im-

ges could not be recognized by human eyes. In addition, the com-

arisons shown in Section 6 also illustrate that AutoGAN-DRP is

ore resilient to reconstruction attacks compared to related works.

Our work has two main contributions: 

• To analytically support privacy guarantee, we introduce ε-DR

Privacy as a theoretical approach to evaluate privacy preserving

mechanism. 

• We propose a non-linear dimension reduction framework for

privacy preservation motivated by Generative Adversarial Nets
[21] and Auto-encoder Nets [22] . a  
The rest of our paper is organized as follows. Section 2 summa-

izes state-of-the-art privacy preservation machine learning (PPML)

echniques and reviews knowledge of deep learning methods in-

luding generative adversarial neural nets and Auto-encoder. Sec-

ion 3 describes the privacy problem through a scenario of a fa-

ial recognition access control system, introduces the definition

f ε-DR Privacy to evaluate DR-based privacy preserving mech-

nisms, and presents our framework AutoGAN-based Dimension

eduction for Privacy Preservation. Section 4 presents and dis-

usses our experiment results over three different face image

atasets. Section 5 compares AutoGAN-DRP to a similar work

AP in terms of reconstruction error and classification accuracy.

ection 6 demonstrates reconstructed images over AutoGAN-DRP

nd other privacy preservation techniques (i.e., Differential Privacy

nd Principle Component Analysis). Finally, the conclusion and fu-

ure work are mentioned in Section 7. 

. Related work 

.1. Literature review 

Cryptographic approach: This approach usually applies to the

cenarios where the data owners do not wish to expose their

lain-text sensitive data while asking for machine learning services

rom a third-party. The most common tool used in this approach

s fully homomorphic encryption that supports multiplication and

ddition operations over encrypted data, which enabling the abil-

ty to perform a more complex function. However, the high cost

f the multiplicative homomorphic operations renders it difficult

o be applied on machine learning tasks. In order to avoid multi-

licative homomorphic operations, additive homomorphic encryp- 

ion schemes are more widely used in privacy preserving machine

earning (PPML). However, the limitation of the computational ca-

acity in additive homomorphic schemes narrows the ability to

pply on particular ML techniques. Thus, such additive homomor-

hic encryption-based methods in [1,2,23,24] are only applicable

o simple machine learning algorithms such as decision tree and

aive bayes. In Hesamifard’s work [3] ,the fully homomorphic en-

ryption is applied to perform deep neural networks over en-

rypted data, where the non-linear activation functions are approx-

mated by polynomials. 

In secure multi-party computing (SMC), multiple parties collab-

rate to compute functions without revealing plain-text to other

arties. A widely-used tool in SMC is garbled circuit [4] , a crypto-

raphic protocol carefully designed for two-party computation, in

hich they can jointly evaluate a function over their sensitive data

ithout the trust of each other. In [25] , Mohammad introduced a

MC protocol for principle component analysis (PCA) which is a

ybrid system utilizing additive homomorphic and garbled circuit.

n secret sharing techniques [5] , a secret s is distributed over mul-

iple pieces n also called shares , where the secret can only be re-

overed by a sufficient amount of t shares . A good review of se-

ret sharing-based techniques and encryption-based techniques for

PML is given in [26] . Although these encryption-based techniques

an protect the privacy in particular scenarios, their computational

ost is a significant concern. Furthermore, as [26] elaborated, the

igh communication cost also poses a big concern for both tech-

iques. 

Non-cryptographic approach: Differential Privacy (DP) [27] aims

o prevent membership inference attacks. DP considers a scenario

hat an adversary infers a member’s information based on the dif-

erence of outputs of a ML mechanism before and after the mem-

er join a database. The database with the member’s informa-

ion and without the member’s information can be considered as

wo neighbor databases which differ by at most one element. DP

dds noise to the outputs of the ML mechanism to result in sim-



96 H. Nguyen, D. Zhuang and P.-Y. Wu et al. / Neurocomputing 384 (2020) 94–103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

d

2

 

b  

o  

t  

w  

t  

a  

c  

V

m

 

 

f  

l  

D  

r  

n  

p

3

 

t  

i

3

 

t  

w  

p  

r  

q  

p  

i  

t  

d  

fi  

s  

f  

W  

p  

s  

c  

a

3

 

h  

s  

i  

s  

b  

c  

n  

n  

i  

d

ilar outputs from the two neighbor databases. Thus, adversaries

cannot differentiate the difference between the two databases. A

mechanism M satisfies ε-differential privacy if for any two neigh-

bor databases D and D 

′ , and any subset S of the output space

of M satisfies Pr [ M ( D ) ∈ S ] ≤ e εPr [ M ( D 

′ ) ∈ S ]. The similarity of

query outputs protects a member information from such mem-

bership inference attacks. The similarity is guaranteed by the pa-

rameter ε in a mechanism in which the smaller ε provides a bet-

ter level of privacy preservation. [6,7,28,29] propose methods to

guarantee ε-differential privacy by adding noise to outcome of the

weights w 

∗ = w + η, where η drawn from Laplacian distribution

and adding noise to the objective function of logistic regression or

linear regression models. [8,9] satisfy differential privacy by adding

noise to the objective function while training a deep neural net-

work using stochastic gradient descent as the optimization algo-

rithm. 

In addition, there are existing works proposing differential pri-

vacy dimension reduction. One can guarantee ε-differential privacy

by perturbing dimension reduction outcome. Principal component

analysis (PCA) whose output is a set of eigenvectors is a popular

method in dimension reduction. The original data is then repre-

sented by its projection on those eigenvectors, which keeps the

largest variance of the data. One can reduce the data dimension

by eliminating insignificant eigenvectors which contain less vari-

ance, and apply noise on the outcome to achieve differential pri-

vacy [10] . However, the downside of these methods is that they are

designed for specific mechanisms and datasets and not working

well with the others. For example, record-level differential privacy

is not effectively used with image dataset as shown in [30] . Also,

the amount of added noise is accumulative based on the number

of queries so that this approach usually leads to low accuracy re-

sults with a high number of queries. 

Similar to our work, Generative Adversarial Privacy (GAP) [12] is

a perturbation method utilizing the minimax algorithm of Genera-

tive Adversarial Nets to preserve privacy and to keep utility of im-

age datasets. GAP perturbs data within a specific l 2 distance con-

straint between original and perturbed data to distort private class

labels and at the same time preserve non-private class labels. How-

ever, it does not protect the images themselves, and an adversary

can visually infer private label (e.g., identity) from images. In con-

trast, our method protects an image by compressing it into a few

dimension vector and then transferring without clearly exposing

the original image. 

2.2. Preliminaries 

To enhance the distance between original and reconstructed

data in our DR system, we utilize the structure of Generative Ad-

versarial Network (GAN) [21] for data perturbation and deep Auto-

encoder [22] for data reconstruction. The following sections briefly

review Auto-encoder and GAN. 

2.2.1. Auto-encoder 

Auto-encoder is aimed at learning lower dimension representa-

tions of unsupervised data. Auto-encoder can be used for denois-

ing and reducing data dimension. It can be implemented by two

neural network components: encoder and decoder . The encoder and

decoder perform reverse operations. The input of the encoder is the

original data while the output of the decoder is expected to be sim-

ilar to the input data. The middle layer extracts latent representa-

tion of original data that could be used for dimension reduction.

An Auto-encoder training process can be described as a minimiza-

tion problem of the auto-encoder’s loss function L (·) : 

L (x, g( f (x ))) (1)
here x is input data, f( · ) is an encoding function, and g( · ) is a

ecoding function. 

.2.2. GAN 

Generative Adversarial Nets is aimed at approximating distri-

ution p d of a dataset via a generative model. GAN simultane-

usly trains two components generator G and discriminator D , and

he input of G is sampled from a prior distribution p z ( z ) through

hich G generates fake samples similar to the real samples. At

he same time, D is trained to differentiate between fake samples

nd real samples, and send feedback to G for improvement. GAN

an be formed as a two-player minimax game with value function

(G,D): 

in 

G 
max 

D 
V (G, D ) = E x ∼p d [ log(D (x ))] 

+ E z∼p z [ log(1 − D (G (z)))] (2)

The two components, Generator and Discriminator can be built

rom neural networks (e.g., fully connected neural network, convo-

utional neural network). The goal of G is to reduce the accuracy of

. Meanwhile, the goal of D is to differentiate fake samples from

eal samples. These two components are trained until the discrimi-

ator cannot distinguish between generated samples and real sam-

les. 

. Methodology 

In this section, we first describe the problem and threat model,

hen we introduce a definition of DR-Privacy and our dimensional-

ty reduction method (AutoGAN-DRP). 

.1. Problem statement 

We introduce the problem through the practical scenario men-

ioned in Section 1 . Fig. 1 briefly describes the entire system in

hich staff members (clients) in a company request access to com-

any resources, such as websites and data servers through a face

ecognition access control system. For example, if member n re-

uests to access web server 2, the local device first takes a facial

hoto of the member by an attached camera, locally transforms

t into lower dimension data, and sends to an authentication cen-

er. The authentication server then obtains the low dimensional

ata and determines member access eligibility by using a classi-

er without clear face images of the requesting member. We con-

ider that the system has three levels of privileges (i.e., single level,

our-level, eight-level) corresponding to three groups of members.

e assume the authentication server is semi-honest (it obeys work

rocedure but might be used to infer personal information). If the

erver is compromised, an adversary in the authentication center

an reconstruct the face features to achieve plain-text face images

nd determine members’ identity. 

.2. Threat model 

In the above scenario, we consider that a strong adversary who

as access to the model and training dataset attempts to recon-

truct the original face images for inferring a specific member’s

dentity. Our attack model can be represented in Fig. 1 . The adver-

ary utilizes training data and facial features to identify a mem-

er identity by reconstructing the original face images using a re-

onstructor in an auto-encoder. Rather than using fully connected

eural network, we implement the auto-encoder by convolutional

eural network which more effective for image datasets. Our goal

s to design a data dimension reduction method for reducing data

imension and resisting full reconstruction of original data. 
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Fig. 2. DR projection and reconstruction. 

Fig. 3. AutoGAN-DRP. 
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.3. ε-Dimension Reduction privacy ( ε-DR Privacy) 

We introduce the Dimension Reduction Privacy (DR-Privacy),

nd define a formal definition of the ε-DR Privacy to mathe-

atically quantify/evaluate the mechanisms designed to preserve

he DR-Privacy via dimension reduction. The DR-Privacy aims to

chieve privacy-preserving via dimension reduction, which refers

o transforming the data into a lower dimensional subspace, such

hat the private information is concealed while the underlying

robabilistic characteristics are preserved, which can be utilized for

achine learning purposes. To quantify the DR-Privacy and guide

s to design such DR functions, we define ε-DR Privacy as follows.

efinition 1 ((. ε-DR Privacy)) A Dimension Reduction Function

 ( · ) satisfies ε-DR Privacy if for each i.i.d. m -dimension input

ample x drawn from the same distribution D , and for a certain

istance measure dist ( · ), we have 

 [ dist(x, ̂  x )] ≥ ε (3) 

here E [ ·] is the expectation, ε ≥ 0, x ′ = F (x ) , ˆ x = R (x ′ ) , and R ( · )

s the Reconstruction Function. 

For instance, as shown in Fig. 2 , given original data x , our

ramework utilizes certain dimension reduction function F ( x ) to

ransform the original data x into the transformed data x ′ . The

dversaries aim to design a corresponding reconstruction function

 ( x ′ ) such that the reconstructed data ˆ x would be closed/similar

o the original data x . DR-Privacy aims to design/develop such di-

ension reduction functions, that the distance between the origi-

al data and its reconstructed data would be large enough to pro-

ect the privacy of the data owner. 

.4. AutoGAN-based dimension reduction for privacy preserving 

autoGAN-DRP) 

We propose a deep learning framework for transforming face

mages to low dimensional data which is hard to be fully recon-

tructed. The framework can be presented in Fig. 3 . We lever-

ge the structure of an auto-encoder [22] which contains encoder

nd decoder (in this work, we called them generator and re-

onstructor) in order to reduce data dimension. More specifically,

he low dimensional representations are extracted from the mid-

le layer of the auto-encoder (the output of the generator). The
imension-reduced data can be sent to the authentication server

s an authentication request. We consider an adversary as a re-

onstructor implemented by a decoder. To resist against fully re-

onstructing images, the framework utilizes a discriminator in GAN

21] to direct reconstructed data to a designated target distribution

ith an assumption that the target distribution is different from

ur data distribution. In this work, the target distribution is sam-

led from Gaussian distribution and the mean is the average of

raining data. After projecting data into a lower dimension domain,

he re-constructor is only able to partially reconstruct the data.

herefore, the adversary might not be able to recognize an individ-

al’s identity. To maintain data utility, we also use feedback from a

lassifier. The entire framework is designed to enlarge the distance

etween original data and its reconstruction to preserve individ-

al privacy and retain significant data information. The dimension-

educed transformation model is extracted from the framework

nd provided to clients for reducing their face image dimensions.

he classification model will be used in an authentication center

hat classifies whether a member’s request is valid to have access

1) or not (0). 

We formulate the problem as follows: Let X be the public train-

ng dataset. ( x i , y i ) is the i th sample in the dataset in which each

ample x i has d features and a ground truth label y i . The system

s aimed at learning a dimension reduction transformation F ( · )

hich transforms the data from d dimensions to d ′ dimensions in

hich d ′ � d . Let X 

′ be the dataset in lower dimension domain.

he dimension-reduced data should keep significant information

o work with different types of machine learning tasks and should

esist against the reconstruction or inference from data owner in-

ormation. 

Our proposed framework is designed to learn a DR function

 ( · ) that projects data onto low dimension space and preserves

rivacy at certain value of ε. The larger distance implies higher

evel of privacy. Fig. 3 presents our learning system in which the

imension-reduced data X 

′ is given by a generator G . Since X 

′ is

xpected to be accurately classified by a classifier C , the genera-

or improves by receiving feedback from the classifier via the clas-

ifier’s loss function L C . We use a binary classifier for single-level

uthentication system and multi-class classifiers for multi-level au-

hentication system. The classifier loss function is defined as the

ross entropy loss of the ground truth label y and predicted label

ˆ  as follows. 

 C = −
n ∑ 

i =1 

m ∑ 

j=1 

y i j log ( ̂  y i j ) (4) 

here m denotes the number of classes and n denotes the number

f samples. 

To evaluate data reconstruction and enlarge the reconstruction

istance, a re-constructor R is trained as a decoder in an auto-

ncoder and sends feedback to the generator via its loss function

 R . The re-constructor plays its role as an aggressive adversary at-

empting to reconstruct original data by using known data. The

oss function of R is the mean square error of original training data

 x ) and reconstructed data ( ̂  x ), as displayed in (5) . 

 R = 

n ∑ 

i =1 

(x i − ˆ x i ) 
2 (5) 

To direct the reconstructed data to a direction that reveals less

isual information, the generator is trained with a discriminator

 as a minimax game in GAN. The motivation is to direct recon-

tructed data to a certain target distribution (e.g., normal distribu-

ion). To ensure a distance, the target distribution should be differ-

nt to training data distribution. The discriminator aims to differ-

ntiate the reconstructed data from samples of the target distribu-

ion. The loss function of D ( L ) can be defined as a cross-entropy
D 
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Algorithm 1 Algorithm for stochastic gradient descent training of 

ε -DR Privacy. 

Input: Training dataset X . 

Parameter: learning rate αr , αd , αc , αg ,training steps 

n r , n d , n c , n g 
A constraint for ε-DR 

Output: Transformation Model 

Initialization. 

1: for n global training iterations do 

2: Randomly sample a mini batch from target distribution and 

label t . 

3: Randomly sample mini batch of data x and corresponding 

label y 

4: for i = 0 to n r iterations do 

5: Update the Reconstruction: 

ϕ i +1 = ϕ i − αr ∇ ϕ L R (ϕ i , x ) 

6: end for 

7: for j = 0 to n d iterations do 

8: Update the Discriminator parameter: 

ω j+1 = ω j − αd ∇ ω L D (ω j , x, t ) 

9: end for 

10: for k = 0 to n c iterations do 

11: Update the Classifier parameter: 

φk +1 = φk − αc ∇ φL C (φk , x, y ) 

12: end for 

13: for l = 0 to n g iterations do 

14: Update the Generator parameter: 

θl+1 = θl − αg ∇ θL G (θl , x, t, y ) 

15: end for 

16: end for 

17: return 

4
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loss of ground truth labels (0 or 1) t and prediction labels ˆ t shown

in (6) . 

L D = −
n ∑ 

i =1 

(t i log ( ̂ t i ) + (1 − t i ) log (1 − ˆ t i )) (6)

The optimal generator parameter θ ∗ is given by the optimiza-

tion problem of the generator loss function L G : 

minimize 
θ

L G (θ ) = α min 

φ
L C − β min 

ω 
L D − γ min 

ϕ 
L R + C(ε) (7)

where θ , φ, ω, and ϕ are the model parameters of the generator,

classifier, discriminator, and re-constructor respectively. α, β , and

γ are weights of components in the objective function of the gen-

erator and can be freely tuned. C(ε) is a constraint function with

respect to hyper-parameter ε, as to be elaborated in the following

section. 

3.5. Optimization with constraint 

In order to meet a certain level of reconstruction distance, we

consider the constrained problem: 

minimize 
θ

L G (θ ) 

s.t E x ∼p d [ dist(x, ̂  x )] ≤ ε
(8)

The optimization problem above can be approximated as an un-

constrained problem [31] : 

minimize 
θ

(L G (θ ) + γ C(ε)) (9)

where γ is a penalty parameter and C is a penalty function 

C(ε) = max (0 , E x ∼p d [ dist(x, ̂  x )] − ε) (10)

Note that C is nonnegative, and C(θ ) = 0 iff the constraint in (8) is

satisfied. 

3.6. Training algorithms 

Algorithm 1 describes the training process of AutoGAN-DRP. The

framework contains four components, and they are trained one by

one (lines 4–15) within one global training step. After sampling

batches from target distribution and data for inputs of the mod-

els (lines 2–3), we then train the four components. First, the re-

constructor is trained in n r iterations while other components’ pa-

rameters are fixed (lines 4–6). Second, the discriminator is trained

(lines 7–9). Third, the classifier is trained in n c iterations (lines 10–

12). Fourth, the generator is trained in n g iterations (lines 13–15).

After training each component in their number of local training

steps, the above training process is repeated until it reaches the

number of global training iterations (lines 1–16). In our setting,

the numbers of local training iterations ( n c , n r , n d , n g ) are much

smaller than the number of global iterations n . 

4. Experiments and discussion 

In this section, we demonstrate our experiments over three

popular supervised face image datasets: the Extended Yale Face

Database B [18] , AT & T [19] , and CelebFaces Attributes Dataset

(CelebA) [20] . To comprehensively evaluate our method perfor-

mance, we also conduct experiments with different generator and

re-constructor structures, different types of classifications (binary

and multi-class classification), different numbers of reduced di-

mensions. The effectiveness of the method is then evaluated in

terms of utility and privacy. 
.1. Experiment setup 

The Extended Yale Face Database B (YaleB) contains 2470

rayscale images of 38 human subjects under different illumina-

ion conditions and their identity label. In this dataset, the image

ize is 168 × 192 pixels. The AT&T dataset has 400 face images

f 40 subjects. For convenience, we resize each image of these two

ataset to 6 4 × 6 4 pixels. CelebA is a color facial image dataset

ontaining 202,599 images of 10,177 subjects. 1709 images of the

rst 80 subjects are used for our experiment. Each image is resized

o 6 4 × 6 4 × 3 pixels. All pixel values are scaled to the range of

0,1]. We randomly select 10% of each subject’s images for valida-

ion and 15% for testing dataset. 

The generator and re-constructor in Fig. 3 are implemented by

hree different structures. Specifically, we follow the architecture

f recent powerful models VGG19, VGG16 [32] and a basic con-

olutional network (CNN). We modify the models to adapt to our

ata size (64 × 64). Discriminator and Classifier are built on

ully connected neural network and convolutional network respec-

ively. Leaky ReLU is used for activation function in hidden layers.

e use linear activation function for generator’s output layers and

oftmax activation functions for other components’ output layers.

ach component is trained in 5 local iterations ( n r , n g , n d , n c ), and

he entire system is trained in 500 global iterations ( n ). The target

istribution is drawn from Gaussian distribution (with the covari-

nce value of 0.5 and the mean is the average of the training data).

able 1 provides detail information of neural networks’ structures

nd other implementation information. 

To evaluate the reliability, we test our framework with differ-

nt levels of authentication corresponding to binary classification

single-level) and multi-class classification (multi-level). For the

ingle-level authentication system, we consider half of the subjects
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Table 1 

Implementation information. 

VGG16 VGG19 CNN 

Hidden layers Units Parameter Hidden layers Units Parameter Hidden layers Units Parameter 

Generator Conv block 64 × 2 Conv block 64 × 2 Conv 256 

Max_pooling Max_pooling BatchNorm 

Conv_block 128 × 2 Conv_block 128 × 2 Conv 512 

Max_pooling 16,295,623 Max_pooling 21,605,319 BatchNorm 16,451,847 

Conv_block 256 × 3 Conv block 256 × 4 Conv 1024 

Max_pooling Maxpooling BatchNorm 

Conv_block 512 × 3 Conv block 512 × 4 Dense 1024 

Max_pooling Max pooling 

Conv_block 512 × 3 Conv block 512 × 4 

Max_pooling Max pooling 

Dense 1024 Dense 1024 

Dense 1024 Dense 1024 

Reconstructor Dense 1024 Dense 1024 Dense 1024 

Dense 1024 Dense 1024 BatchNorm 

Dense 1024 Dense 1024 Reshape 

Reshape Reshape Conv 1024 

Conv_block-T 512 × 3 Conv_block-T 512 × 4 BatchNorm 

Up_sampling 10,184,000 Up_sampling 13,281,472 Conv 512 18,048,256 

Conv_block-T 512 × 3 Conv_block-T 512 × 4 BatchNorm 

Up_sampling Up_sampling Conv 256 

Conv_block-T 256 × 3 Conv_block-T 256 × 4 

Up_sampling Up_sampling 

Conv_block-T 128 × 2 Conv_block-T 128 × 2 

Up_sampling Up_sampling 

Conv_block-T 64 × 2 Conv_block-T 64 × 2 

Classifier Dense 2048 Dense 2048 Dense 2048 

BatchNorm BatchNorm BatchNorm 

Dropout Dropout Dropout 

Dense 2048 Dense 2048 Dense 2048 

BatchNorm 12,636,168 BatchNorm 12,636,168 BatchNorm 12,636,168 

Dropout Dropout Dropout 

Dense 2048 Dense 2048 Dense 2048 

BatchNorm BatchNorm BatchNorm 

Dropout Dropout Dropout 

Dense 2048 Dense 2048 Dense 2048 

BatchNorm BatchNorm BatchNorm 

Dropout Dropout Dropout 

Discriminator Conv 128 Conv 128 Conv 128 

Dropout Dropout Dropout 

Conv 256 5,084,737 Conv 256 5,084,737 Conv 256 5,084,737 

Dropout Dropout Dropout 

Flatten Flatten Flatten 

Dense 1024 Dense 1024 Dense 1024 

Dense 1024 Dense 1024 Dense 1024 

Shared parameters: optimizer Adam, learning rate 0.0 0 01, 7 dimensions 

Hardware: GPU Testla T4 16Gb, CPU Xeon Processors @2.3Ghz 

Software: Tensorow 2.0 beta. The number of trainable parameters are reported by model.summary() from Keras library. 
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n the dataset are valid to access company’s resources while the

est are invalid. We randomly divide the dataset into two groups

f subjects and labels their images to (1) or (0) depending on their

ccess permission. For the cases of multi-level authentication sys-

em, we divide the subjects into four groups and eight groups.

herefore, the authentication server becomes four-class and eight-

lass classifier respectively. 

.2. Utility 

We use accuracy metric to evaluate the utility of dimension-

educed data. The testing dataset is tested with the classifier ex-

racted from our framework. Different structures of Generator and

e-constructor are applied including VGG19, VGG16, basic CNN on

ifferent privilege levels which correspond to multi-class classifica-

ion. Fig. 4 illustrates the accuracies for different dimensions from

hree to seven over the three facial datasets. Overall, the accuracies

mprove when the number of dimension increases. The accuracies

n the two gray image datasets (AT&T and Yale_B) reaches 90% and

igher when using VGG with only seven dimensions. This accu-
acy figure for Celeba is smaller, but it still reaches 80%. In general,

GG19 structure performs better than using VGG16 and basic CNN

n terms of utility due to the complexity ( Table 1 ) and adaptability

o image datasets of VGG19. As the dimension number is reduced

rom 4096 (64 × 64) to 7, we can achieve a compression ratio of

85 yet achieve accuracy of 90% for the two gray datasets and 80%

or the color dataset. This implies our method could gain a high

ompression ratio and maintain a high utility in terms of accuracy.

uring conducting experiments we also observe that the accuracy

ould be higher if we keep the original resolution of images. How-

ver, for convenience and reducing the complexity of our structure,

e resize images to the size of 64 × 64 pixels. 

.3. Privacy 

In this study, the Euclidean distance is used to measure the

istance between original and reconstructed images: dist(x, ̂  x ) =
| x − ˆ x || 2 . Fig. 5 illustrates the average distances between origi-

al images and reconstructed images on testing data with dif-

erent ε constraints (other setting parameters: seven dimensions,
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Fig. 4. Accuracy for Different Number of Reduced Dimensions. 

Fig. 5. Average Distance Measurement Result { 7 dimensions, Single-Level}. 
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single-level authentication, and VGG19 structure). The achieved

distances (red lines) are larger than the hyper-parameter ε (black

dotted lines) where ε is less than 0.035 for AT&T, 0.052 for YaleB

and 0.067 for CelebA. Thus, our framework can satisfy ε-DR with

ε of above values. Due to the fact that the re-constructor obtained

some information (we consider the adversary can reach the model

and the training data), we can only set the distance constraint ε
within a certain range as shown in 5 . The intersection between the

red line and the dotted black line points out the largest distance

our framework can achieve. Since the mean of the target distribu-

tion is set to be the same as the mean of training dataset, recon-

structed images will be close to the mean of training dataset which

we believe it will enlarge the distance and expose less individ-

ual information. Thus, the range of epsilon can be estimated base

on the expectation of the distance between testing samples and

the mean of training data. In addition, the first section of Table 2

demonstrates some samples and their corresponding reconstruc-

tions in single-level authentication and seven dimensions with dif-

ferent achieved accuracies and distances. The reconstructed images

could be nearly identical, thus making it visually difficult to recog-

nize the identity of an individual. 

5. Comparison to GAP [12] 

In this section, we compare the proposed framework with GAP,

which shares many similarities. At first, we attempt to visualize

AutoGAN-DRP and GAP by highlighting their similarities and differ-

ences. Then, we exhibit our experiment results of the two methods

on the same dataset. 

In terms of similarities, AutoGAN-DRP and GAP are utilizing

minimax algorithms of Generative Adversarial Nets, applying the

state-of-the-art convolution neural nets for image datasets, consid-

ering l 2 norm distance (i.e., distortion in GAP, privacy measurement

in AutoGAN-DRP) between the original images and reconstructed
mages. Specifically, both GAP and AutoGAN-DRP consider the re-

onstruction distance between original and reconstructed images.

n GAP this distortion refers to the Euclidean between original and

rivatized images, and AutoGAN-DRP denotes the distance as the

uclidean distance between original and reconstructed images. In

his context, the distance and distortion refer to the same mea-

urement and have the same meaning. To be consistent, we use

he term distance to present this measurement in the rest of this

ection. 

However, there are also distinctions between GAP and

utoGAN-DRP. In GAP, the adversary aims to identify a private la-

el (e.g., gender) which should be kept secret while AutoGAN-DRP

ims to visually protect the owner’s face images by enlarging the

econstruction distance. Thus, instead of considering a private label

n loss function of the generator in GAP, AutoGAN-DRP is aimed

t driving the reconstructed data into a target distribution using a

iscriminator. 

Fig. 6 illustrates the visualization of AutoGAN-DRP and GAP. In

utoGAN-DRP, privacy is assessed based on how well an adversary

an reconstruct the original data and measured by the distance

etween original and reconstructed data. The dimension-reduced

ata is reconstructed using the state-of-the-art neural network (an

uto-encoder). The larger the distance is, the more privacy can be

chieved. Further, if the reconstructed images are blurry, privacy

an be preserved since it is hard to visually determine an individ-

al identity. The data utility is quantified by the accuracy of the

lassification tasks over dimension-reduced data which captures

he most significant data information. Meanwhile, GAP perturbs

mages with a certain distortion constraint to achieve privacy. It

valuates data utility by the classification accuracy of non-private

abel and assesses privacy by the classification accuracy of private

abel. Similar to AutoGAN-DRP, the high distortion is most likely to

ield high level of privacy. In GAP, however, high distortion might

ramatically reduce the classification accuracy of non-private label.
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Table 2 

Sample visualization of AutoGAN, DP, PCA over three datasets. 

AbeleCBelaYT&TA
Acc 0.93 0.79 0.65 0.90 0.80 0.69 0.73 0.66 0.59
Dist 0.0116 0.0198 0.0245 0.0184 0.0246 0.0585 0.0513 0.0531 0.06618

A
ut

oG
A

N
-D

R
P

Org (7) (7) (7) Org (7) (7) (7) Org (7) (7) (7)
Acc 0.69 0.63 0.57 0.68 0.60 0.58 0.62 0.59 0.56
Dist 0.0164 0.0313 0.0405 0.0149 0.0314 0.0407 0.0200 0.0418 0.0509

D
iff

er
en

ti
al

P
ri

va
cy

Org (11) (8) (7) Org (11) (8) (7) Org (11) (8) (7)
Acc 0.90 0.75 0.60 0.87 0.83 0.71 0.71 0.68 0.57
Dist 0.0197 0.0264 0.0348 0.0228 0.0266 0.0287 0.0362 0.0379 0.0511

P
C

A

Org (15) (7) (5) Org (15) (7) (5) Org (15) (7) (5)
Acc : Average accuracy on testing data
Dist: Average Euclidean distance between original images and reconstructed/perturbed images
Org : Original images
(.) Experiment parameters: epsilon for DP and number of reduced dimensions for PCA and AutoGAN-DRP
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for different number of dimensions. It becomes evident that our 
his might be caused by the high correlation between private and

on-private labels. This difference enables AutoGAN-DRP to pre-

erve more utility than GAP at the same distortion level, as the

xperiment result (depicted in Fig. 7 ) reveals. 

In the experiment, we reproduce a prototype of Transposed

onvolutional Neural Nets Privatizer (TCNNP) in GAP using materi-

ls and source code provided by [12] . We also modify our frame-

ork to make it as similar to TCNNP as possible. Specifically, a

ombination of two convolutional layers with ReLU activation func-

ion and two fully connected neural network layers are used for

mplementing the Generator similar to TCNNP. Our Classifier is

onstructed on two convolutional layers and two fully connected
idden layers similar to the Adversary in GAP. We also test our

ramework on GENKI, the same dataset with GAP. The utility is

valuated by the accuracy of facial expression classification (a bi-

ary classification). It should be noted that our framework have

een shown to work on different datasets with multi-class classifi-

ation, which is more challenging and comprehensive. Fig. 7 shows

he accuracy results of GAP and AutoGAN-DRP for GENKI dataset.

utoGAN-DRP achieves distances ranging from 0.037 to 0.039 for

ifferent dimensions from one to seven. At the same range of dis-

ance (distortion per pixel), GAP achieves accuracy of only 72%

hile AutoGAN-DRP gains accuracy rates starting from 77% to 91%
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Fig. 6. AutoGAN-DRP Vs GAP Explanation. 

Fig. 7. GENKI Facial Expression Accuracy Vs Distance using GAP and AutoGAN-DRP. 
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method can achieve higher accuracy than that of GAP at the same

distortion level. 

6. Visual comparison to privacy preserving techniques using 

Differential Privacy (DP) [27] and Principle Component Analysis

(PCA) [33] 

In this section, we compare AutoGAN-DRP with other privacy

preserving methods in terms of ability to visually identify client’s

identities. We choose the widely used tool for privacy preserv-

ing Differential Privacy (DP) [27] and another privacy preservation

method utilizing dimensionality reduction technique (i.e., Principle

Component Analysis [33] ). 

In these experiments, we implement AutoGAN-DRP following

VGG19 structure for the Generator and Re-constructor, and other

setting parameters (e.g., number of hidden layers, learning rate, op-

timization) are shown in Table 1 . The images are reduced to seven

dimensions for different values of ε-DR to achieve different dis-

tances and accuracies. The datasets are grouped into two groups

corresponding to a binary classifier. 

For implementing DP, we first generate a classifier on the au-

thentication server by training the datasets with a VGG19 binary

classifier (the structure of hidden layers is similar to our Genera-

tor in Table 1 ). The testing images are then perturbed using dif-

ferential privacy method. Specifically, Laplace noise is added to the

images with the sensitivity coefficient of 1 (it is computed by the

maximum range value of each pixel [0,1]) and different DP epsilon
arameters (this DP epsilon is different from our ε-DR). The per-

urbed images are then sent to the authentication server and fed

o the classifier. We visually compare the perturbed images of this

ethod with AutoGAN. 

In addition, we follow instruction in FRiPAL [11] in which the

lients reduce image dimension using Principle Component Anal-

sis (PCA) and send reduced features to the server. FRiPAL claims

hat by reducing image dimension, their method can be more re-

ilient to reconstruction attacks. The experiments are conducted

ith different number of reduced dimension. The images are re-

onstructed using MoorePenrose inverse method with assumption

hat an adversary has assess to the model. The classification ac-

uracy is evaluated using a classifier which has similar structure to

utoGAN’s classifier. 

Table 2 shows image samples and results over the three

atasets. Overall, AutoGAN-DRP is more resilient to reconstruction

ttacks compared to the other two techniques. For instance, at the

ccuracy of 79% on AT&T dataset, 80% on YaleB, and 73% on CelebA,

e cannot distinguish entities from the others. For DP method,

he accuracy decreases when the DP epsilon decreases (adding

ore noise), and the perturbed images become harder to recog-

ize. However, at a low accuracy 57%, we are still able to distin-

uish identities by human eyes. The reason is that DP noise does

ot focus on the important visual pixels. For PCA, the accuracy

lso goes down when the number of dimensions decreases and the

istances increase. Since PCA transformation is linear and deter-

inistic, the original information can be significantly reconstructed

sing the inverse transformation deriving from the model or train-

ng data. Thus, at the accuracy of 75% on AT&T, 71% on YaleB, and

8% on CelebA, we still can differentiate individuals. Overall, our

roposed method shows the advantage in securing the data while

etaining high data utility. 

. Conclusion 

In this paper, we introduce a mathematical tool ε-DR to eval-

ate privacy preserving mechanisms. We also propose a non-

inear dimension reduction framework. This framework projects

ata onto lower dimension domain in which it prevents recon-

truction attacks and preserves data utility. The dimension-reduced

ata can be used effectively for the machine learning tasks such as

lassification. In our future works, we plan to extend the frame-

ork to adapt with different types of data, such as time series

nd categorical data. We will apply different metrics to compute

he distance other than l 2 norm and investigate the framework on

everal applications in security systems and data collaborative con-

ributed systems. 
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