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Abstract—Supervised learning techniques such as classification
algorithms learn from training data to predict the correct label
for newly presented input data. In many real-world scenarios,
training data required by such techniques can contain personal
information and data collection can be a significant problem
due to privacy concerns. Cryptographic techniques have been
used before to do training on encrypted data. However, such
techniques are computationally expensive and they are not
scalable most of the time. If a dataset in another party will
be used for training, differential privacy technology can be used
to preserve the privacy of the individuals in the dataset. When
there is no such dataset and data needs to be collected from
individuals directly for training, local differential privacy can
be used. Local differential privacy is a technology to preserve
privacy during data sharing with an untrusted data collector. In
this work, we propose to use local differential privacy techniques
to train a Naive Bayes classifier. Using the proposed solution,
an untrusted party collects perturbed data from individuals
that keep the relationship between the feature values and class
labels. By estimating probabilities needed by the Naive Bayes
classifier using the perturbed data, the untrusted party can
classify new instances with high accuracy. We develop solutions
that work for both discrete and continuous data. We also
propose utilizing dimensionality reduction techniques to decrease
communication cost and improve accuracy. We show the accuracy
of the proposed Naive Bayes classifier achieving local differential
privacy via experiments on several datasets. We also show how
dimensionality reduction enhances the accuracy.

Index Terms—Local Differential Privacy, Naive Bayes, Classi-
fication, Dimensionality Reduction

I. INTRODUCTION

Predictive analytics is the process of making prediction

about future events by analyzing the current data using sta-

tistical techniques. It is used in many different areas such as

marketing, insurance, financial services, mobility, and health-

care. For predictive analytics many techniques can be used

from statistics, data mining, machine learning, and artifi-

cial intelligence. Classification methods in machine learning

such as neural networks, support vector machines, regression

techniques, and Naive Bayes are widely used for predictive

analytics. These methods are supervised learning methods in

which labeled training data is used to generate a function

which can be used for classifying new instances. In these

supervised learning methods, the accuracy of the classifier

highly depends on the training data. Using a larger training

set improves the accuracy most of the time. Hence, one needs

to have a large training data in order to do classification

accurately. However, collecting a large dataset brings privacy

concerns. In many real life applications, the classification tasks

require training sets containing sensitive information about

individuals such as financial, medical or location information.

For instance, insurance companies need financial information

of individuals for risk classification. If there is a company that

wants to build a model for risk classification, the data collec-

tion may be a critical problem because of privacy concerns.

Therefore, we address the problem of doing classification

while protecting the privacy of the individuals who provide

the training data; thus enabling companies and organizations

to achieve their utility targets, while helping individuals to

protect their privacy.

Differential privacy is a commonly used standard for quan-

tifying individual privacy. In the original definition of dif-

ferential privacy [1], there is a trusted data curator which

collects data from individuals and applies techniques to obtain

differentially private statistics about the population. Then,

the data curator publishes privacy-preserving statistics about

the population. Satisfying differential privacy in the context

of classification has been widely studied [2]–[4]. However,

these techniques are not suitable when individuals do not

trust the data curator completely. To eliminate the need of

trusted data curator, techniques to satisfy differential privacy

in the local setting have been proposed [5]–[8]. In local

differential privacy (LDP), individuals send their data to the

data aggregator after privatizing data by perturbation. Hence,

these techniques provide plausible deniability for individuals.

Data aggregator collects all perturbed values and makes an

estimation of statistics such as the frequency of each value in

the population.

In order to guarantee the privacy of the individuals who

provide training data in a classification task, we propose using

LDP techniques for data collection. We apply LDP techniques

to Naive Bayes classifiers which are set of simple probabilistic
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classifiers based on Bayes’ theorem. Naive Bayes classifiers

use the assumption of independence between every pair of fea-

tures. They are highly scalable and particularly suitable when

the number of features is high or when the size of training

data is small. Naive Bayes is a popular method for text classi-

fication (e.g. spam detection and sentiment classification), and

it is also used in many other practical applications such as

medical diagnosis, digit recognition, and weather prediction.

Despite its simplicity, Naive Bayes can often perform better

than or close to more sophisticated classification methods.

Given a new instance, Naive Bayes basically computes the

conditional probability of each class label, and then assigns the

class label with maximum probability to the given instance.

Using Bayes’ theorem and the assumption of independence

of features, each conditional probability can be decomposed

as the multiplication of several probabilities. One needs to

compute each of these probabilities using training data in order

to do Naive Bayes classification. Since the training data must

be collected from individuals by preserving privacy, we utilize

LDP frequency and statistics estimation methods for collecting

perturbed data from individuals and estimating conditional

probabilities in Naive Bayes classification. To be able to

estimate the conditional probability that a feature would have

a specific value given a class label, the relationship between

class labels and each feature must be preserved during data

collection. Therefore, a new instance can be classified based

on the collected privatized training data with Naive Bayes

classifier. We developed techniques to perform this privatized

training for discrete and continuous data using Naive Bayes

classifiers.

Our contributions can be summarized as follows:

First, for the discrete features, we developed LDP Naive

Bayes classifier using LDP frequency estimation techniques;

where each possible probability that can be used to classify

an instance with Naive Bayes is estimated, by preserving the

relationships between class labels and features. For pertur-

bation, we utilized five different LDP mechanisms: Direct

Encoding (DE), Symmetric and Optimal Unary Encoding

(SUE and OUE), Summation with Histogram Encoding (SHE),

and Thresholding with Histogram Encoding (THE).

Second, for the continuous features, we propose two ap-

proaches: (a) discretizing the data, and then applying LDP

techniques (similar to the previous discussion), and (b) ap-

plying Gaussian Naive Bayes after adding Laplace noise to

the data to satisfy LDP. For the second approach, we utilized

and compared three types of continuous data perturbation

methods. In both approaches, we also propose to utilize

dimensionality reduction to improve accuracy and to decrease

the communication cost and the amount of noise added.

Third, we conducted experiments with real datasets using

various LDP techniques. The results demonstrate that the

accuracy of the Naive Bayes classifier is maintained even when

the LDP guarantees are satisfied. Our experiment results also

show that dimensionality reduction improves classification

TABLE I: An example dataset

Age Income Gender Missed Payment
Young Low Male Yes

Young High Female Yes

Medium High Male No

Old Medium Male No

Old High Male No

Old Low Female Yes

Medium Low Female No

Medium Medium Male Yes

Young Low Male No

Old High Female No

accuracy without decreasing the privacy level.

The rest of the paper is organized as follows. We ex-

plain Naive Bayes classification, locally differentially private

frequency and statistics estimation methods as background

in Section II. In Section III, we present our methods to

apply LDP techniques into Naive Bayes classification. We

experimentally evaluate the accuracy of the classification under

LDP in Section IV. Related work is reviewed in Section V.

Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Naive Bayes Classification

In probability theory, Bayes’ theorem describes the proba-

bility of an event, based on prior knowledge of conditions that

might be related to the event. It is stated as follows:

P (A | B) =
P (B | A) · P (A)

P (B)

Naive Bayes classification technique uses Bayes’ theorem

and the assumption of independence between every pair of

features. Let the instance to be classified be n-dimensional

vector X = {x1, x2, ..., xn}, the names of the features be

F1, F2, ..., Fn, and the possible classes that can be assigned

to the instance be C = {C1, C2, ..., Ck}. Naive Bayes clas-

sifier assigns the instance X to the class Cs if and only if

P (Cs | X) > P (Cj | X) for 1 ≤ j ≤ k and j �= s. Hence,

the classifier needs to compute P (Cj | X) for all classes

and compare these probabilities. Using Bayes’ theorem, the

probability P (Cj | X) can be calculated as

P (Cj | X) =
P (X | Cj) · P (Cj)

P (X)

Since P (X) is same for all classes, it is sufficient to find

the class with maximum P (X | Cj) · P (Cj). With the

assumption of independence of features, it is equal to P (Cj) ·∏n
i=1 P (Fi = xi | Cj). Hence, the probability of assigning

Cj to given instance is proportional to P (Cj) ·
∏n

i=1 P (Fi =
xi | Cj).

1) Discrete Naive Bayes: To demonstrate the concept of the

Naive Bayes classifier for discrete (categorical) data, we use

the dataset given in Table I. In this example, the classification

task is predicting whether a customer will miss a mortgage
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TABLE II: Conditional probabilities for F1 (i.e. Age) of the

example dataset.

P (Age = Y oung | C1) = 2/4
P (Age = Y oung | C2) = 1/6
P (Age = Medium | C1) = 1/4
P (Age = Medium | C2) = 2/6

P (Age = Old | C1) = 1/4
P (Age = Old | C2) = 3/6

payment or not. Hence, there are two classes such as C1

and C2 representing missing a previous payment or not,

respectively. P (C1) = 4
10 and P (C2) = 6

10 . In addition,

conditional probabilities for the feature “Age” is given in Table

II. Similarly, conditional probabilities for the other features can

be calculated.

In order to predict whether a young female with medium

income will miss a payment or not, we can set X = (Age =
Y oung, Income = Medium, Gender = Female). To

use Naive Bayes classifier, we need to compare P (C1) ·∏3
i=1 P (Fi = xi | C1) and P (C2) ·

∏3
i=1 P (Fi = xi | C2).

Since the first one is equal to 0.025 and the second one is

equal to 0.055, it can be concluded that C2 is assigned for the

instance X by Naive Bayes classifier. In other words, it can

be predicted that a young female with medium income will

not miss her payments.

2) Gaussian Naive Bayes: For continuous data, a common

approach is assuming the values are distributed according to

Gaussian distribution. Then, the conditional probabilities can

be computed using the mean and the variance of the values. Let

a feature Fi has a continuous domain. For each class Cj ∈ C
the mean μi,j and the variance σ2

i,j of the values of Fi in

the training set are computed. For the given instance X , the

conditional probability P (Fi = xi | Cj) is computed using

Gaussian distribution as follows:

P (Fi = xi | Cj) =
1√

2πσ2
i,j

e
− (xi−μi,j)

2

2σ2
i,j

Gaussian Naive Bayes can also be used for features with large

discrete domain. Otherwise, the accuracy may reduce because

of the high number of values which are not seen in the training

set.

B. Local Differential Privacy

Local differential privacy (LDP) is a way of measuring the

individual privacy in the case where the data curator is not

trusted. In LDP setting, individuals perturb their data before

sending it to a data aggregator. Hence, the data aggregator

only sees perturbed data. It aggregates all reported values

and estimates privacy-preserving statistics. LDP states that

for any reported value, the probability of distinguishing two

input values by the data aggregator is at most e−ε. The formal

definition of local differential privacy is as follows:

Definition 1: A protocol P satisfies ε-local differential

privacy if for any two input values v1 and v2 and any output

o in the output space of P ,

Pr [P (v1) = o] ≤ Pr [P (v2) = o] · eε

Randomized response mechanism is one method to satisfy

LDP. In the binary randomized response mechanism, the input

is a single bit. An individual sends the correct bit to the data

aggregator with probability p and incorrect bit with probability

1 − p. The aggregator can estimate the actual number of 0s

and 1s by using the probability p and the reported numbers of

0s and 1s. To satisfy ε-LDP, p can be selected as eε

1+eε . This

problem can be generalized into frequency estimation problem

where the inputs can be selected from a larger set containing

more than two values.

1) LDP Frequency Estimation: In the problem of frequency

estimation, there are m individuals having a value from the

set D = {1, 2, ..., d}. The aim of data aggregator is to find the

number of individuals having a value i ∈ D for all values in

the set. Wang et al. [9] proposed a framework to generalize

the LDP frequency estimation protocols in the literature, and

they also proposed two new protocols. Here, we summarize

the LDP protocols which are explained in [9] in detail. All of

them can be used for frequency estimation in our solution. We

empirically compare their effect on accuracy in our problem

setting in Section IV.

Direct encoding (DE): In this method, there is no encoding

of input values. For perturbation, an individual reports her

value v correctly with probability p = eε

eε+d−1 , or reports one

of the remaining d − 1 values with probability q = 1
eε+d−1

per each. When the aggregator collects all perturbed values

from m individuals, it estimates the frequency of each i ∈
{1, 2, ..., d} as follows: Let ci be the number of times i is

reported. Estimated number of occurrence of value i in the

population is computed as Ei =
ci−m·q
p−q .

Histogram encoding: An individual encodes her value

v as length-d vector [0.0, ...., 1.0, ..., 0.0] where only vth

component is 1.0 and the remaining are 0.0. Then, she perturbs

her value by adding Lap(2ε ) to each component in the encoded

value, where Lap( 2ε ) is a sample from Laplace distribution

with mean 0 and scale parameter 2
ε . When the data aggre-

gator collects all perturbed values, it can use two estimation

methods. In summation with histogram encoding (SHE), it

calculates the sum of all values reported by individuals. To

estimate the number of occurrence of value i in the population,

the data aggregator sums the ith components of all reported

values. In thresholding with histogram encoding (THE), the

data aggregator sets all values greater than a threshold θ to 1,

and the remaining to 0. Then it estimates the number of i’s
in the population as Ei =

ci−m·q
p−q , where p = 1 − 1

2e
ε
2 (1−θ),

q = 1
2e
− ε

2 θ, and ci is the number of 1’s in the ith components

of all reported values after applying thresholding.

Unary encoding: In this method, an individual encodes her

value v as length-d binary vector [0, ...., 1, ..., 0] where only
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vth bit is 1 and the remaining are 0. Then, for each bit in

the encoded vector, she reports correctly with probability p
and incorrectly with probability 1 − p if the input bit is 1.

Otherwise, she reports correctly with probability 1 − q and

incorrectly with probability q. In symmetric unary encoding

(SUE), p is selected as eε/2

eε/2+1
and q is selected as 1 − p. In

optimal unary encoding (OUE), p is selected as 1
2 and q is

selected as 1
eε+1 . The data aggregator estimates the number

of 1’s in the population as Ei =
ci−m·q
p−q , where ci denotes the

number of 1’s in the ith bit of all reported values.

2) LDP Mean Estimation: As explained in Section II-A2,

Gaussian Naive Bayes is suitable for large discrete domains

and continuous domains. Conditional probabilities are com-

puted using the mean and the variance. In order to compute

the mean under LDP, Laplace mechanism can be used [10].

Let the domain be normalized, and an individual has a value

v ∈ [−1, 1]. The individual adds Laplace noise Lap(2ε ) to

her value and reports noisy value (v′ = v + Lap( 2ε )) to the

data aggregator. Since the mean of noises that are drawn from

Laplace distribution is 0, the data aggregator calculates the

sum of all noisy values reported by individuals, and divides

the sum by the number of individuals to estimate the mean. As

for estimating the variance, we explain our proposed method

in Section III-B.

3) LDP with Multi-dimensional Data: The frequency and

mean estimation methods described in Section II-B1 and

II-B2 work for one-dimensional data. If the data owned by

individuals is multi-dimensional, reporting each value with

these methods may cause privacy leaks due to the dependence

of features. Hence, the following approaches were proposed

to deal with n-dimensional data.

Approach 1: For the Laplace mechanism described in

Section II-B2, LDP can also be satisfied if the noise scaled

with the number of dimensions n [10]. Hence, if an indi-

viduals’ input is V = (v1, ..., vn) such that vi ∈ [−1, 1] for

all i ∈ {1, ..., n}, then she can report each vi after adding

Lap( 2nε ) (i.e. v′i = vi+Lap( 2nε )). This approach is not suitable

if the number of dimensions n is high because large amount

of noise reduces the accuracy.

Approach 2: For mean estimation, Nguyên et al. [10]

introduced an algorithm that requires reporting one bit by

each individual to the data aggregator. An individual has an

input value V = (v1, ..., vn) such that vi ∈ [−1, 1] for all

i ∈ {1, ..., n}. She can perturb and report her input as follows:

• She select j ∈ {1, ..., n} uniformly at random.

• She samples Bernoulli variable u such that Pr [u = 1] =
vj(e

ε−1)+eε+1
2eε+2 .

• She sets v′j =
eε+1
eε−1 ·n if u = 1, v′j = − eε+1

eε−1 ·n otherwise.

• She reports V ′ =
(
0, ..., 0, v′j , 0, ..., 0

)
to the data aggre-

gator.

Since the only non-zero value is v′j and it has two possible

values, it is sufficient to report one bit to indicate the sign of

v′j . Each feature is approximately reported by m
n individuals.

This approach is efficient in terms of communication cost.

Approach 3: The first two approaches are specific to

continuous data. Hence, we outline a third approach that is

more general. The data aggregator requests only one perturbed

input from each individual to satisfy ε-LDP. Each individual

can select the input to be reported uniformly at random or the

data aggregator can divide the individuals into n groups and

requests different input values from each group. As a result,

each feature is approximately reported by m
n individuals. This

approach is suitable when the number of individuals m is high

relative to the number of features n. Otherwise the accuracy

decreases since the number of reported values is low for each

feature.

C. Dimensionality Reduction

The approaches for dealing with multi-dimensional data

suffer from the high number of dimensions which necessitates

adding more noise that results in decreasing the accuracy. In

the first approach, the amount of noise is directly proportional

to the number of dimensions. In the second approach, the

number of individuals who report each feature decreases for

high number of dimensions because each feature is approxi-

mately reported by m
n individuals. Therefore, we propose to

utilize dimensionality reduction techniques to improve accu-

racy. Dimensionality reduction is a machine learning tool that

is traditionally used to solve over-fitting issues, and to reduce

the computational cost caused by high numbers of features. We

utilize two commonly used methods for dimensionality reduc-

tion: Principal Component Analysis (PCA) and Discriminant

Component Analysis (DCA) [11].

PCA reduces the dimensions while preserving most of the

information by projecting the data on the principal components

with the highest variance. By projecting the data in the

direction of the highest variability, PCA also tends to decrease

the reconstruction error; thus improving recoverability of the

original data from its projection. On the other hand, DCA
utilizes the class labels Ci’s to project the data in the direction

that can effectively discriminate between different classes.

Such direction might not be necessarily the direction of the

highest variance; thus DCA can be superior to PCA for labeled

data.

III. NAIVE BAYES CLASSIFICATION UNDER LOCAL

DIFFERENTIAL PRIVACY

As explained in Section II-A, one needs to know the

probability P (Cj) for all classes, and P (Fi = xi | Cj) for

all classes and all possible xi values in order to use Naive

Bayes classifier. These probabilities are calculated based on

the training data. However, when individuals avoid sharing

their data for training due to privacy reasons, it is impossible

to calculate these probabilities. Since LDP provides plausible

deniability for individuals, LDP methods can be used to

train Naive Bayes classifier. In this section, we explain the
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TABLE III: Notations used in the paper.

X = (x1, ..., xn) instance to be classified

C = {C1, C2, ..., Ck} the set of class labels

n the number of features

k the number of class labels

m the number of individuals

estimation of such necessary probabilities using LDP methods.

First we introduce a solution for classification for all discrete

features (Section III-A), and then we explain the solutions to

deal with continuous data (Section III-B). Table III shows the

notations used in the paper.

A. LDP Naive Bayes with Discrete Features

We initially consider the case where all the features are

numerical and discrete. There are m individuals who are reluc-

tant to share their data to train a classifier. However, they can

share perturbed data to preserve their privacy. By satisfying

LDP during data collection, the privacy of individuals can

be guaranteed. Here, we propose a solution that utilizes the

LDP frequency estimation methods given in Section II-B in

order to compute all necessary probabilities for a Naive Bayes

classifier.

The data aggregator needs to estimate class probabilities

P (Cj) for all classes in C = {C1, C2, ..., Ck} and conditional

probabilities P (Fi = xi | Cj) for all classes and all possible xi

values. Let an individual’s (e.g. Alice’s) data be (a1, a2, ..., an)
and her class label be Cv . She needs to prepare her input and

perturb it by satisfying LDP. We now explain the preparation

and the perturbation of input values based on Alice’s data and

the estimation of the class probabilities and the conditional

probabilities by data aggregator.

1) Computation of Class Probabilities: For the compu-

tation of class probabilities, Alice’s input becomes v ∈
{1, 2, ..., k} since her class label is Cv . Alice encodes and

perturbs her value v, and reports to the data aggregator.

Any LDP frequency estimation method which is explained

in Section II-B1 can be used. Similarly, other individuals

report their perturbed class labels to the data aggregator. The

data aggregator collects all perturbed data and estimates the

frequency of each value j ∈ {1, 2, ..., k} as Ej . As a result, the

probability P (Cj) is estimated as
Ej∑k
i=1 Ei

. For the example

dataset in Table I, Alice’s input v becomes 1 if she has a

missing payment or 2 if she does not have a missing payment.

2) Computation of Conditional Probabilities: To estimate

the conditional probabilities P (Fi = xi | Cj), it is not

sufficient to report feature values directly. To be able to com-

pute these probabilities, the relationship between class labels

and features must be preserved. To keep this relationship,

individuals prepare their inputs using feature values and class

labels. Let the total number of possible values for Fi be ni.

If Alice’s value in ith dimension is ai ∈ {1, 2, ..., ni} and

her class label value is v ∈ {1, 2, ..., k}, then Alice’s input

for feature Fi becomes vi = (ai − 1) · k + v. Therefore,

each individual calculates her input for the ith feature in

the range of [1, k · ni]. For instance, let “Age” values in the

Table I be enumerated as (Young = 1), (Medium = 2), (Old

= 3). For this feature, an individual’s input can be a value

between 1 and 6, where 1 represents the age is young and

there is a missing payment, and 6 represents the age is old

and there is no missing payment. Therefore, there is one input

value that corresponds to each line of Table II. Similarly, the

number of possible inputs for “Income” is 6 and the number

of possible inputs for “Gender” is 4. After determining her

input in ith feature, Alice encodes and perturbs her value

vi, and reports the perturbed value to the data aggregator.

To estimate the conditional probabilities for Fi, the data

aggregator estimates the frequency of individuals having value

y ∈ {1, 2, ..., ni} and class label z ∈ {1, 2, ..., k} as Ey,z

by estimating the frequency of input (y − 1) · k + z. Hence,

the conditional probability P (Fi = xi | Cj) is estimated

as
Exi,j∑ni
h=1 Eh,j

. For the example given above, to estimate the

probability P (Age = Medium | C2), the data aggregator

estimates the frequency of 2, 4, and 6 as E1,2, E2,2, and E3,2,

respectively. Then P (Age = Medium | C2) is estimated as
E2,2

E1,2+E2,2+E3,2
.

As a result, in order to contribute to the computation of class

probabilities and conditional probabilities, each individual can

prepare n+1 inputs (i.e. {v, v1, v2, ...., vn} for Alice) that

can be reported after perturbation. As mentioned in Section

II-B3, reporting multiple values which are dependent to each

other decreases the privacy level. Reporting all n+1 perturbed

values increases the probability of predicting the class labels

of individuals by the data aggregator. This case is similar

to requesting multiple queries in the centralized setting of

differential privacy. Hence, each individual reports one input

as described in Approach 3 in Section II-B3.

Finally, when the data aggregator estimates a value such as

Ej or Ey,z , the estimation may give a negative result. In that

case, we set all the negative estimations to 1 to obtain valid

probability.

B. LDP Naive Bayes with Continuous Features

In order to satisfy LDP in Naive Bayes classification for

continuous data, we propose two different solutions. First

solution is discretizing the continuous data and applying the

discrete Naive Bayes solution outlined in Section III-A. In this

solution, continuous numerical data is divided into buckets

to make it finite and discrete. Each individual perturbs her

input after discretization. Second, the data aggregator can use

Gaussian Naive Bayes to estimate the probabilities as given in

Section II-A2. To estimate the mean and the variance, the data

aggregator uses LDP methods given in Section II-B2. Figure

1 shows the steps of the proposed solutions. As explained in

Section II-B3, the number of dimensions can be reduced to

improve accuracy; hence, we utilize dimensionality reduction

techniques. Now, we describe the solutions in detail.
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Probability Estimation 
by Data Aggregator 

Data Dimensionality 
Reduction 

Discretization 

Normalization 

Discrete Naïve Bayes 

Gaussian Naïve Bayes 

Frequency 
Estimation 

Statistics 
Estimation 

Perturbation 
by Individuals 

Approach 3 

Approach 1 

Approach 2 

Approach 3 

Fig. 1: Steps of LDP Naive Bayes for multi-dimensional continuous data.

Discrete Naive Bayes. We first propose to use the solution

introduced for discrete data in Section III-A. Based on known

feature ranges for features with continuous or large domain,

the data aggregator determines the intervals for buckets in

order to discretize the domain. Equal-Width Discretization

(EWD) can be used for equally partitioning the domain. EWD

computes the width of each bin as max−min
nb

where max
and min are the maximum and minimum feature values, and

nb is the number of desired bins. We utilized EWD in our

experiments for discretization.

When the data aggregator shares the intervals with individ-

uals, each individual firstly discretizes her continuous feature

values, and then applies the procedure described in Section

III-A for perturbation. The data aggregator also estimates the

probabilities with the same procedure for LDP Naive Bayes for

discrete data. As mentioned in Section III-A2, each individual

should report just one perturbed value to guarantee ε-LDP.

Gaussian Naive Bayes. As explained in Section II-A2,

a common approach for Naive Bayes classification for con-

tinuous data is assuming the data is normally distributed.

For locally differentially private Gaussian Naive Bayes, com-

puting the class probabilities is same with the computation

for discrete features as given in Section III-A1. To compute

conditional probabilities, the data aggregator needs to have the

mean and the variance of training values for each feature given

a class label. That is, to compute P (Fi = xi | Cj), the data

aggregator needs to estimate the mean μi,j and the variance

σ2
i,j using the Fi values of individuals with a class label Cj .

Hence, the association between features and class labels has to

be maintained (similar to the discrete Naive Bayes classifier).

The mean estimation was explained in Section II-B2. How-

ever to compute the mean μi,j and the variance σ2
i,j together,

we propose the following method: the data aggregator divides

the individuals into two groups. One group contributes to the

estimation of the mean (i.e. μi,j) by perturbing their inputs

and sharing with the data aggregator, while the other group

contributes to the estimation of the mean of squares (i.e. μs
i,j)

by perturbing the squares of their inputs and sharing with data

aggregator.

Let Bob has class label Cj and his feature Fi value be

bi. Note that, the domain of each feature was assumed to

be normalized to have a value in [−1, 1]. If Bob is in the

first group, he adds Laplace noise to his value bi and obtains

perturbed feature value b′i. When data aggregator collects all

perturbed feature values from individuals in the first group

having class label Cj , it computes the mean of the perturbed

feature values which gives an estimation of the mean μi,j

because the mean of noise added by individuals is 0. Similar

operations could be followed by the second group. If Bob is

in the second group, he adds noise to his squared value b2i
to obtain b2i

′
and shares it with the data aggregator. Similarly,

the data aggregator computes the estimation of the mean of

squares (μs
i,j). Finally, the variance σ2

i,j can be computed as

μs
i,j − (μi,j)

2. Once again, each individual reports only one

of her value or square of her value after perturbation because

they are dependent values.

In this explained method to compute the mean and the

variance, the class label of individuals are not hidden from the

data aggregator. To hide the class labels, we adopt the follow-

ing approach: an individual (Bob) reporting a feature value

Fi = bi associated with class Cj where j ∈ {1, 2, · · · , k},
first constructs a vector of length k where k is the number

of class labels. The vector is initialized to zeros except for

the jth element corresponding to the jth class label which

is set to the feature value bi. After that, each element of the

vector is perturbed as usual (i.e. by adding Laplace noise), and

contributed to the data aggregator. Since noise is added even

to the zero elements of the vector, the data aggregator will not

be able to deduce the actual class label, or the actual values.

As for estimating the actual mean value (and mean of the

squared values) for each class, the data aggregator only needs

to compute the mean of the perturbed values as usual, and

then dividing that value by the probability of that class. To

understand why, assume that a specific class j has Probability
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TABLE IV: Datasets used in the experiments.

Name # Instances # Features # Class Labels

Car Evaluation 1, 728 6 4
Chess 3, 196 36 2

Mushroom 8, 124 22 2
Connect-4 67, 557 42 3

P (Cj) (explained in Section III-A1). Hence, for a specific

feature Fi, only P (Cj) of the individuals have their actual

values in jth element of the input vector, while the remaining

proportion (1 − P (Cj)) have zeros. Hence, after the noise

clustered around the actual mean cancels each other, and the

noise clustered around zero cancel each other, we would have

P (Cj) ∗ μi,j = observed (shifted) mean. Hence, we can

divide the observed mean by P (Cj) to obtain the estimated

mean. The same situation applies for the mean of the squared

values, and hence for computing the variance.

IV. EXPERIMENTAL EVALUATION

To evaluate the accuracy of Naive Bayes classification under

local differential privacy, we have implemented the proposed

methods in Python utilizing pandas and NumPy libraries. We

have implemented 5 different LDP protocols for frequency

estimation such as Direct Encoding (DE), Summation with

Histogram Encoding (SHE), Thresholding with Histogram

Encoding (THE), Symmetric Unary Encoding (SUE), and Op-

timal Unary Encoding (OUE) which are presented in Section

II-B. We performed experiments with different θ values in

THE and we achieved best accuracy when θ = 0.25. Hence,

we give the experiment results of SHE for θ = 0.25. We

repeated all experiments 100 times and present the average

classification accuracy. We used datasets from UCI Machine

Learning repository [12] and selected 80% of the datasets

for training and the remaining 20% for testing. We firstly

present the results for the datasets with categorical and discrete

features in Section IV-A. The results for continuous data is

given in Section IV-B.

A. LDP Naive Bayes with Discrete Features

To evaluate the classification accuracy of the proposed

method in Section III-A for classifying data with discrete

features, we used Car Evaluation, Chess, Mushroom, and

Connect-4 datasets from UCI ML repository. The number

of instances, features, and class labels are given in Table

IV. Initially, we performed Naive Bayes classification without

local differential privacy to compare the accuracy under local

differential privacy.

Experiment results for varying ε values up to 5 are shown

in Figure 2. Dotted lines in the figures show the accuracy

without privacy. As expected, when the number of instances

in the training set increases, the accuracy is better for smaller ε
values. For instance, in Connect-4 dataset, all protocols except

SHE provide more than 65% accuracy even for very small ε
values. Since the accuracy without privacy is approximately

75%, the accuracy of all of these protocols for ε values smaller

than 1 is noticeable. The results are also similar for Mushroom

dataset. For ε = 0.5, all protocols except SHE provide nearly

90% classification accuracy. In all of the datasets, the protocol

with worst accuracy is SHE. Since this protocol simply sums

the all noisy values, its variance is higher than the other

protocols. DE achieves the best accuracy for small ε values in

Car Evaluation and Chess datasets because the input domains

are small. The variance of DE is proportional to the size of the

input domain. Therefore, its accuracy is better when the input

domain is small. SUE and OUE provides similar accuracy in

all of the experiments. They perform better than DE when

the size of input domain is large. Although OUE is proposed

by [9] to decrease variance, we did not observe considerable

utility difference between SUE and OUE in our experiments.

B. LDP Naive Bayes with Continuous Features

In this section, we outline the results for the methods

proposed in Section III-B for continuous data. We conducted

the experiments on two different datasets: Australian and

Diabetes. The Australian dataset has 14 original features, and

the Diabetes dataset has 8 features. Initially, we applied the

discretization method and implemented two dimensionality

reduction techniques (i.e. PCA and DCA) to observe the effect

of them in accuracy. The results for two datasets for different

values of ε are given in Figure 3. We present the results

for two LDP schemes (i.e. Direct Encoding and Optimized

Unary Encoding) which provide the best accuracy for different

domain sizes. The input domain is divided into d = 2 buckets

for Australian dataset and d = 4 buckets for Diabetes dataset.

For Australian dataset, we obtained the best results for PCA

and DCA when the number of features is reduced to one. For

Diabetes dataset, best accuracy is achieved when PCA reduces

the number of features to 6 and when DCA reduces the number

of features to one. As evident in Figure 3, DCA provides

the best classification accuracy, which shows the advantage

of using dimensionality reduction before discretization. As

expected, DCA’s accuracy is better than PCA since it is mainly

designed for classification.

We also applied locally differentially private Gaussian Naive

Bayes (LDP-GNB) on the same two datasets. We implemented

all three perturbation approaches for multi-dimensional data

explained in Section II-B3. Figure 4 shows the results of

performing LDP-GNB on these two datasets. Among three

approaches, the first one results in lowest utility since individ-

uals report all features by adding more noise (i.e. propotional

to the number of dimensions). In each figure, three curves are

shown which correspond to using the original data (with 14 or

8 features for Australian and Diabetes datasets, respectively),

or projecting the data using PCA or DCA before applying the

LDP noise. The positive effect of reducing the dimensions can

be clearly seen in all figures. In both datasets, and for PCA

and DCA, the number of reduced dimensions were one. DCA
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(a) Car Evaluation dataset (b) Chess dataset

(c) Mushroom dataset (d) Connect-4 dataset

Fig. 2: Classification accuracy for datasets with discrete features

or PCA always performs better than the original data, and for

all perturbation approaches.

Finally, when we compare discretization and Gaussian

Naive Bayes for continuous data, it can be concluded that

discretization provides better accuracy than Gaussian Naive

Bayes. Especially for smaller ε values, the superiority of

discretization is more apparent. Although it is not possible

to compare the amount of noise for randomized response and

Laplace mechanism, discretization possibly causes less noise

due to smaller input domain.

V. RELATED WORK

Privacy-preserving Naive Bayes classification has been

studied before in different settings. Kantarcioglu et al. [13]

proposed privacy-preserving Naive Bayes classifier for hor-

izontally partitioned data. Their solution is secure in semi-

honest threat model and utilizes computationally expensive

cryptographic techniques such as oblivious transfer. Vaidya et

al. [14] addressed the same problem for vertically partitioned

data. They also used secure multi-party computation primitives

which are computationally expensive operations. Naive Bayes

classification under differential privacy has been studied in

[15]. In [15], centralized setting for differential privacy is

considered where the data owner has a training data and aims

to release classifier by protecting privacy. They explain how

to compute the sensitivity and add Laplace noise to satisfy

differential privacy in Naive Bayes classifier. Li et al. [16]

extended it to multiple data owners. Even though their problem

setting is similar to our case, they guarantee the differential

privacy at global level by calculating the global sensitivity

and applying Laplace noise to the counts. Their solution

does not satisfy the differential privacy in the local setting

and preserves individual privacy with encryption techniques.

Although privacy-preserving Naive Bayes classifier has been

studied under different privacy settings such as horizontally or

vertically partitioned data, and centralized differential privacy,

none of them addresses the problem under LDP.

Most of the work in the literature about differential privacy

consider the centralized setting. One of the earliest work on

differential privacy in the local setting is Google’s RAPPOR

[6]. They proposed using randomized response mechanism to

satisfy ε-LDP and using bloom filters to decrease commu-

nication cost. Bassily et al. [5] also proposed a method to

satisfy LDP in frequency estimation utilizing random matrix

projection. Wang et al. [9] introduced a framework of pure

LDP protocols to generalize the frequency estimation proto-

cols in the literature and they proposed two new protocols for

frequency estimation. We utilize these protocols in our work
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(a) Australian dataset / Direct Encoding (b) Australian dataset / Optimized Unary Encoding

(c) Diabetes dataset / Direct Encoding (d) Diabetes dataset / Optimized Unary Encoding

Fig. 3: Classification accuracy for datasets with continuous features using discretization

as mentioned in Section II-B. Other than frequency estimation,

some other problems such as heavy hitters [17] and marginal

release [18] have also been studied under LDP. The most

similar work to our work is [19], which presents a system

to do machine learning by satisfying LDP. To achieve better

accuracy, they reduced the size of input domain to two and

they also considered a binary classification model that has only

two class labels. Using LDP frequency estimation the statistics

about the features are estimated and using these statistics

synthetic data is generated to train classification model. In

our work, we do not especially address binary classification

problem, and hence the number of class labels can be more

than two. In addition, input domain for the features can have

more than two values. By keeping the relationship between

class labels and features, we allow estimation of probabilities

for Naive Bayes classifier without a need for generating

synthetic data.

VI. CONCLUSION

We proposed methods for applying locally differentially

private frequency and statistics estimation protocols to collect

training data in Naive Bayes classification. Using the pro-

posed methods, one can estimate all necessary probabilities

to be used in Naive Bayes classification for both discrete

and continuous data. To be able to estimate the conditional

probabilities, the proposed methods preserve the relationship

between features and class labels during the selection of

inputs. Our experiment results indicate that the classification

accuracy of LDP Naive Bayes for ε > 2 is very close to the

accuracy without privacy. Even for smaller ε values, the accu-

racy is remarkable when Direct Encoding or Unary Encoding

schemes are used for discrete data and when discretization

is used for continuous data. In addition, experiment results

show that using dimensionality reduction techniques such as

DCA improves the accuracy of the proposed methods for

continuous data. The proposed methods facilitate collecting

large training data to use in Naive Bayes classifier without

compromising the privacy of the individuals providing training

data. Other than Naive Bayes, LDP techniques can be utilized

in different machine learning methods which can be considered

as potential future work.
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(a) Australian dataset / Approach 1 (b) Australian dataset / Approach 2 (c) Australian dataset / Approach 3

(d) Diabetes dataset / Approach 1 (e) Diabetes dataset / Approach 2 (f) Diabetes dataset / Approach 3

Fig. 4: Classification accuracy for datasets with continuous features using Gaussian Naive Bayes
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