
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019 1485

Enhanced PeerHunter: Detecting Peer-to-Peer
Botnets Through Network-Flow Level

Community Behavior Analysis
Di Zhuang , Student Member, IEEE, and J. Morris Chang, Senior Member, IEEE

Abstract— Peer-to-peer (P2P) botnets have become one of the
major threats in network security for serving as the fundamental
infrastructure for various cyber-crimes. More challenges are
involved in the problem of detecting P2P botnets, despite a few
work claimed to detect centralized botnets effectively. We pro-
pose an enhanced PeerHunter, a network-flow level community
behavior analysis based system, to detect P2P botnets. Our
system starts from a P2P network flow detection component.
Then, it uses “mutual contacts” to cluster bots into communities.
Finally, it uses network-flow level community behavior analysis
to detect potential botnets. In the experimental evaluation,
we propose two evasion attacks, where we assume the adversaries
know our techniques in advance and attempt to evade our system
by making the P2P bots mimic the behavior of legitimate P2P
applications. Our results showed that enhanced PeerHunter can
obtain high detection rate with few false positives, and high
robustness against the proposed attacks.

Index Terms— P2P botnet, intrusion detection, network
security, community detection.

I. INTRODUCTION

ABOTNET is a set of compromised machines controlled
by botmasters through command and control (C&C)

channels. Botnets may have different communication archi-
tectures. Traditional botnets are known to use centralized
architectures, which have potential single point of failure.
Peer-to-peer (P2P) network is modeled as a distributed archi-
tecture, where even if a certain number of peers do not function
properly, the whole network is not compromised. Most of
the recent botnets (e.g., Storm, Waledac and ZeroAccess)
attempted to use P2P architectures, and P2P botnets were
proved to be highly resilient even after a certain number of
bots being identified or taken down [1]. P2P botnets provide
a fundamental infrastructure for various cyber-crimes, such
as distributed denial-of-service (DDoS), email spam, click
fraud, etc. For instance, recent botnet attacks including those
carried out by WhiskeyAlfa (responsible for Sony Pictures
Entertainment attack) and WannaCry (responsible for ransom-
ing healthcare facilities in Europe) showed the scale and scope

Manuscript received February 22, 2018; revised August 14, 2018 and
October 6, 2018; accepted November 5, 2018. Date of publication
November 15, 2018; date of current version February 13, 2019. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Georges Kaddoum. (Corresponding author: Di Zhuang.)

The authors are with the Department of Electrical Engineering, University
of South Florida, Tampa, FL 33620 USA (e-mail: dizhuang@mail.usf.edu;
chang5@usf.edu).

Digital Object Identifier 10.1109/TIFS.2018.2881657

of damage that P2P botnets can cause. As such, detecting P2P
botnets effectively is rather important for securing cyberspace.

Designing an effective P2P botnets detection systems is
very challenging. First, botnets tend to act stealthily [2] and
spend most of their time in the waiting stage before per-
forming any malicious activities [3]. Approaches using mali-
cious activities would have small window of opportunities to
detect such botnets. Second, botnets tend to encrypt the C&C
channels, causing deep-packet-inspection (DPI) based methods
ineffective. Third, the role of a single bot can be changed
dynamically depending on the current structure of a botnet [4]
(e.g., P2P bot can shift its functionality to act as a botmaster
when the prior botmaster has been taken down). Hence, it is
difficult to characterize a botnet just by looking at a single bot.

In this work, we present Enhanced PeerHunter, an extension
of PeerHunter [5], aiming to use network-flow level com-
munity behaviors to detect waiting stage P2P botnets, even
in the scenario that P2P bots and legitimate P2P applica-
tions are running on the same set of hosts. We consider a
botnet community as a group of compromised machines that
communicate with each other or connect to the same set of
botmasters through the same C&C channel, are controlled
by the same attacker, and aim to perform similar malicious
activities. In the “waiting stage”, no malicious activities could
be observed. As discussed in [4], the dynamic change of
communication behaviors of P2P botnets makes it extremely
hard to identify a single bot. Nonetheless, bots belonging to the
same P2P botnet always operate together as a community and
share the same set of community behaviors. Our system starts
from a P2P network flow detection component, and builds a
network-flow level mutual contacts graph (MCG) depending
on the mutual contacts characteristics [6] between each pair of
the P2P network flows. Afterwards, it employs a community
detection component to cluster the same type of bots into the
same community, and separate bots and legitimate applications
or different types of bots into different communities. Finally,
our system uses the destination diversi ty (the “P2P behav-
ior”) and the mutual contacts (the “botnet behavior”) as the
natural behaviors to detect P2P botnet communities.

In the experiments, we mixed a background network
dataset [7] with 5 P2P botnets datasets and 4 legitimate P2P
applications datasets [8]. To make our experimental evalu-
ation as unbiased and challenging as possible, we propose
a network traces sampling and mixing method to generate
synthetic experimental datasets. To be specific, we evaluated

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4569-7123

1486 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

our system with 100 synthetic experimental datasets that
each contains 10,000 internal hosts. We implemented our
P2P network flow detection component using MapReduce
framework, which dramatically reduced the number of hosts
subject to analysis by 99.03% and retained most of the P2P
hosts. Also, the MapReduce design and implementation of
our system could be deployed on cloud-computing platforms
(e.g., Amazon EC2), which ensures the scalability of our
system (i.e., processing an average of 97 million network
flows in about 20 minutes). To summarize, our work has the
following contributions:
• We present a novel, effective and efficient network-flow

level community behavior analysis based system, Enhanced
PeerHunter, which is capable of detecting P2P botnets
when (a) botnets are in their waiting stage; (b) the C&C chan-
nel has been encrypted; (c) the botnet traffic are overlapped
with legitimate P2P traffic on the same host; and (d) none
statistical traffic patterns are known in advance (unsupervised).
• We experimented our system using a wide range of para-

meter settings. With the best parameter settings, our system
achieved 100% detection rate with zero false positive.
• We propose two evasion attacks (i.e., passive and active

mimicking legitimate P2P application attacks), where we
assume the adversaries know our techniques in advance and
attempt to evade our system via instructing P2P bots to mimic
the behavior of legitimate P2P applications. The experiment
results showed that our system is robust to both attacks.
• We compared Enhanced PeerHunter with PeerHunter [5]

(i.e., our previous work) and Zhang et al. [2]. Extensive
experiments were conducted to show that (a) our system
outperforms Zhang et al. [2] in terms of the detection rate
of different botnets, the overall precision, recall and false
positives, and (b) our system is more robust to MMKL attacks
compared with PeerHunter [5] and Zhang et al. [2].

The rest of this paper is organized as follows: Section II
presents the related work. Section III explains the motivation
and details of the features applied in our system. Section IV
describes the system design and implementation details.
Section V presents the experimental evaluation. Section VI
discusses the evasions and possible solutions, deployment
and the potential extensions of our system. Section VII
concludes.

II. RELATED WORK

To date, a few methods attempting to detect P2P botnets
were proposed [2]–[6], [8]–[14]. From the data perspec-
tive, recent approaches can be divided into two catego-
ries [14]: payload-based and flow-based. Payload-based
systems [9], [15], [16] use payload content and header infor-
mation of network packets to detect botnets. For instance,
BotHunter [9] is a well-known packet inspecting bot detection
system that relies on a modified Snort [17] (i.e., a rule-
based intrusion detection system that requires the access
to the full payload) to detect potential malicious activities
and further identify infected hosts. Lu et al. [15] proposed
to use decision tree models trained on the n-gram features
extracted from the network traffic payload to detect botnets.
Wang et al. [16] proposed to use lexical features of HTTP

header (TCP payload) to discover malicious behaviors of
Android botnets.

Flow-based systems [2]–[6], [8], [10]–[14], [18], [19] use
header information of network packets (i.e., network flow
characteristics) to capture botnets behaviors. Compared with
payload-based systems, flow-based systems use less informa-
tion from the network packets. Since recent botnets tend to use
encryption to hide their payload information from the detection
systems, most of the packet-based systems that applying
deep packet inspection (DPI) on the payload information
(e.g., BotHunter [9]) will be foiled. Zhang et al. [20] proposed
to add a high-entropy flow detector into BotHunter to detect
bots, when part of the packets payloads of botnets’ network
flows are encrypted. Their assumption is that the presence
of high-entropy flows (detected from the encrypted packets
payloads) together with existing botnets events (detected from
the non-encrypted packets payloads by BotHunter) could
identify botnets using encrypted network traffic. However,
if all the packets payloads are encrypted [14], it will be
hard for their approach to perform. The flow-based detection
systems have advantage over the packet-based systems that
applying deep packet inspection (DPI) on the payload infor-
mation (e.g., BotHunter [9]) given that they can be applied
to encrypted traffic. Some flow-based systems applied one or
several different supervised machine learning algorithms on
a set of well extracted network flow features to model the
botnets behaviors. For instance, Jianguo et al. [21] applied
three supervised machine learning algorithms (i.e., SVM,
Logistic Regression and Neural Network) on network flow
features extracted from Netmate and Tranalyzer to detect
botnets. They obtained very high performance metrics, while
employing a fully labelled dataset. Khanchi et al. [19] pro-
posed an approach using genetic programming and ML on
data streams to detect botnets flows. However, since most of
the supervised ML-based approaches usually generate models
that are focusing on specific types of botnets (existing in the
training data), those approaches will not be effective to detect
botnets not appeared in the training data (unknown botnets).

Some flow-based systems utilized a combination of differ-
ent heuristics to model P2P botnets behaviors. For instance,
Botgrep [10] proposed to detect P2P botnets through local-
izing structured communication graphs, where they found
that the communication graph of P2P applications have fast
convergence time of random walks to a stationary distrib-
ution. However, their method can only identify structured
communication subgraphs, rather than ensure those subgraphs
containing P2P botnets. Entelecheia [3] proposed to use a
synergistic graph-mining approach on a super-flow graph
built from network flow features (i.e., volume per hour,
duration per flow) to identify a group of P2P bots, where
they claimed that P2P botnet network flow tend to have low
volume and long duration. Group or community behavior
based methods [4]–[6], [11] considered the behavior patterns
of a group of bots within the same P2P botnet community.
Coskun et al. [6] developed a P2P botnets detection approach
that started from building a mutual contacts graph of the
whole network, then attempted to use “seeds” (known bots)
to identify the rest of botnets. However, it is impractical

ZHUANG AND CHANG: ENHANCED PEERHUNTER: DETECTING P2P BOTNETS 1487

to have a “seed” in advance. Similar to the idea of using
mutual contacts graph, Ma et al. [22] proposed to use the
coexistence of domain cache-footprints distributed in networks
that participate in the outsourcing service (i.e., coexistence
graph) to detect malicious domains. Yan et al. [4] proposed
a group-level behavior analysis based P2P botnets detection
method, where they started from clustering P2P hosts into
groups, and then used supervised machine learning methods
(e.g., SVM) to identify bots through a set of group-level
behavior features. Since their approach relied on supervised
classification methods (e.g., SVM) which required to train the
model of each botnet on fully labelled dataset in advance,
it would be hard for their method to detect unknown botnets.
Chen et al. [23] applied three unsupervised machine learning
algorithms (i.e., self-organising map, local outlier factor and
k-NN outlier) to build a normal behavior profile to detect
botnet. They obtained a very high detection rate (91.3%), but
with inherited high false positive rates due to the nature of
the unsupervised ML algorithms employed. PeerHunter [5],
our previous work, proposed to use the host level community
behavior analysis to detect P2P botnets, which did not consider
the scenario that P2P bots and legitimate P2P applications
could run on the same set of hosts. Zhang et al. [2] proposed
a scalable botnet detection system capable of detecting stealthy
P2P botnets (i.e., in the waiting stage), where no knowledge
of existing malicious behavior was required in advance. They
also claimed to work in the scenario that the botnet traffic are
overlapped with the legitimate P2P traffic on the same host.
However, their experimental dataset was slightly biased and
less challenging. For example, in their dataset, the number
of bots was twice as many as the number of legitimate P2P
hosts, which was much easier for bots to form clusters than
legitimate P2P hosts.

In this work, we present Enhanced PeerHunter, a network-
level flow-based system that relies on community behavior
analysis to detect P2P botnets. We compared Enhanced Peer-
Hunter with PeerHunter [5] and Zhang et al. [2] on a more
challenging and comprehensive experimental datasets, and
showed that our system outperforms both systems in terms
of detection rate, false positives and the performance under
the proposed mimicking legitimate P2P application attacks.

III. BACKGROUND AND MOTIVATION

In this section, we investigate the characteristics being used
to detect P2P network traffic, and introduce the concept of
“mutual contacts”, which motivated us to formulate the P2P
botnet detection problem as a network community detection
problem. Also, we explore the P2P botnet community behav-
iors being used to identify botnets communities. To demon-
strate the features discussed in this section, we conducted some
preliminary experiments using the dataset shown in Table III
and Table IV. Table I shows the notations and descriptions,
and Table II shows the measurements of features.

A. P2P Network Characteristics
Due to the nature of P2P networks, P2P hosts usually com-

municate with their peers through IP addresses directly, with-
out any queries from DNS services [24], namely, non-DNS
connections (NoDNS). Also, peer churn is another typical

TABLE I

NOTATIONS AND DESCRIPTIONS

TABLE II

MEASUREMENTS OF FEATURES

behavior in P2P networks [25], which results in a signif-
icant number of failed connections in P2P network flow.
Furthermore, due to the decentralized nature of P2P network,
a P2P host usually communicates with peers distributed in a
large range of physical networks, which results in destination
diversity (DD) [8] of P2P management network flow (MNF).
To be clearer, P2P host generate two types of network flow:
(1) management network flow, which maintains the function
and structure of the P2P network, and (2) other network flow,
such as data-transfer flow, which does not necessarily have the
P2P network characteristics. The P2P network flow mentioned
in this section and the rest all refers to P2P MNF.

Zhang et al. [2] proposed to remove a decent number of
non-P2P network flow using NoDNS, and then performed a
fine-grained P2P hosts detection using DD. Based on their
experiment results, DD plays a much more important role in
detecting P2P hosts than NoDNS. Therefore, in this work,
we decided to only use DD to simplify and speed up the
P2P network flow detection procedure. In addition, we used
the number of distinct /16 IP prefixes of each host’s network
flow, rather than BGP prefix used in [2] to approximate DD,
since /16 IP prefix is a good approximation of network
boundaries. For instance, it is very likely that two IP addresses
with different /16 IP prefixes belong to two distinct physical
networks. This is also supported by Table II, which shows the
network flow in a P2P network spreading across many distinct
physical networks according to the number of /16 IP prefixes.

B. Mutual Contacts
The mutual contacts (MC) between a pair of hosts is a set

of shared contacts between them [6]. Consider the network
illustrated in Fig. 1a which contains an internal network (A, B,
C, D and E) and an external network (1, 2, 3, 4 and 5). A link
between a pair of hosts means communication between them.
In Fig. 1a, 1, 2 are the mutual contacts shared by A, B.

1488 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

Fig. 1. Illustration of network (a) and its mutual contacts graph (b).

Mutual contacts are the natural characteristic of P2P botnet.
Compared with legitimate hosts, a pair of bots within the same
P2P botnet has higher probability to share mutual contacts [6].
Because bots within the same P2P botnet tend to receive the
same C&C messages from the same set of botmasters [26].
Moreover, in order to prevent bots (peers) from churning,
the botmaster must check each bot periodically, which results
in a convergence of contacts among peers within the same
botnet [2]. However, since bots from different botnets are
controlled by different botmasters, they will not share many
mutual contacts. A pair of Legitimate hosts may have a small
set of mutual contacts, since nearly all hosts communicate with
some popular servers, such as google.com, facebook.com [6].
Furthermore, the host pairs running the same P2P applications
may also result in a decent ratio of mutual contacts, if they
communicate with the same set of peers by coincidence.
However, in practice, legitimate P2P hosts with different
purposes will not search for the same set of peers. As such,
we can use mutual contacts to cluster the bots within the
same botnet, and separate P2P botnets from legitimate P2P
applications.

The basic idea of using mutual contacts is to build a mutual
contacts graph (MCG) as shown in Fig. 1, a host level MCG,
where A, B are linked together in Fig. 1b, since they have
mutual contacts 1, 2 in Fig. 1a. Similarly, C, D, E are linked
to each other in Fig. 1b, since every pair of them share
at least one mutual contacts in Fig. 1a. More details about
network-flow level MCG is discussed in Section IV-B.

C. Community Behavior Analysis
Due to the dynamic changes of a single bot’s communi-

cation behavior [4], it would be extremely hard to identify a
single bot. However, bots within the same P2P botnet always
work together as a community, thus, should have distin-
guishable community behaviors. We consider three types of
community behaviors: (a) flow statistical feature, (b) numerical
community feature and (c) structural community feature.

1) Flow Statistical Feature: Botnet detection methods using
flow statistical features, have been widely discussed [2]–[5].
For the MNFs of a specific P2P application, most of its
statistical patterns depend on its P2P network protocol. How-
ever, the statistical patterns of other network flows, such as
data-transfer flow, are usually situation-dependent, which vary
a lot even in the same P2P network. In this work, we use the

ingoing and outgoing bytes-per-packets (BPP) of MNFs in one
P2P network as its community flow statistical feature.

2) Numerical Community Feature: We consider two
numerical community features: average destination
diversity ratio (AVGDDR) and average mutual contacts
ratio (AVGMCR).

a) Average destination diversity ratio: This captures the
“P2P behavior” of P2P botnets. The destination diversity (DD)
of a P2P host is the number of distinct /16 IP prefixes of
its network flows’ destination IPs. The destination diversity
ratio (DDR) of each host is its DD divided by the total number
of distinct destination IPs of its network flows. Due to the
decentralized nature of P2P networks, P2P network flow tend
to have higher DDR than non-P2P network flow. Furthermore,
network flow from P2P botnets usually have higher AVGDDR
than network flow from legitimate networks. Network flow
from bots within the same botnet tend to have similar DDR,
since those bots are usually controlled by machines, rather
than humans. However, the destinations of legitimate P2P
network flow are usually user-dependent, which result in their
DDR varying greatly from user to user. Besides, our approach
aims to cluster bots within the same botnets together, rather
than attempting to cluster the legitimate hosts. Therefore,
legitimate communities might contain both P2P hosts and non-
P2P hosts, leading to lower AVGDDR. As shown in Table II,
both legitimate hosts and bots spread across a wide range of
distinct networks. However, most of the botnets have higher
AVGDDR than legitimate applications, except Sality.

b) Average mutual contacts ratio: This captures the “bot-
net behavior” of P2P botnets. The mutual contacts ratio (MCR)
between a pair of hosts is the number of mutual contacts
between them, divided by the number of total distinct contacts
of them. This is based on three observations: (a) P2P botnets
are usually formed by at least two bots, otherwise they
cannot act as a group, (b) the MCR of a pair of bots within
the same botnet is much higher than the MCR of a pair
of legitimate applications or a pair of bots from different
botnets, and (c) each pair of bots within the same botnet
has similar MCR. Thus, we define AVGMCR as the average
MCR among all pairs of hosts within one network community.
As shown in Table II both botnets and certain legitimate
network communities have a considerable number of mutual
contacts. That is because those legitimate communities have
much more “base” contacts than botnets. However, botnets
have much higher AVGMCR.

3) Structural Community Feature: This captures the struc-
tural characteristics of a botnet. As discussed above, every pair
of bots within the same botnet tends to have a considerable
number or ratio of mutual contacts. If we consider each host
as a vertex and link an edge between a pair of hosts when they
have mutual contacts, the bots within the same botnet tend to
form cliques. On the contrary, the contacts of different legit-
imate hosts usually diverge into different physical networks.
Thus, the probability that legitimate communities form certain
cliques is relatively low. Then, we can consider P2P botnets
detection as a clique detection problem, which detects cliques
from a given network with certain requirements. However,
since clique detection problem is NP-complete, we cannot

ZHUANG AND CHANG: ENHANCED PEERHUNTER: DETECTING P2P BOTNETS 1489

Fig. 2. System overview.

Algorithm 1 P2P Network Flow Detection
1: function MAP([i psrc, i pdst, proto, bppout, bppin])
2: K ey← [i psrc, proto, bppout, bppin]
3: V alue← i pdst

4: output (K ey, V alue)
5: end function
6: function REDUCE(K ey, V alue[])
7: k ← K ey
8: ddk = Ø
9: for v ∈ V alue[] do

10: ddk ← ddk ∪ {v}
11: end for
12: if |ddk| ≥ �dd then
13: for v ∈ V alue[] do
14: output (k, v)
15: end for
16: end if
17: end function

directly apply such method to detect botnets, without any pre-
processing. We propose to combine all three botnet community
behaviors, and use the previous two community behaviors as
the “preprocessing” of the clique detection problem.

IV. SYSTEM DESIGN

Enhanced PeerHunter has three components, as shown
in Fig. 2, that work synergistically to (a) detect P2P network
flow, (b) construct the network-flow level mutual contacts
graph, and (c) detect P2P botnets.

A. P2P Network Flow Detection
This component aims to detect network flow that engage

in P2P communications using the features described in
Section III-A. The input is a set of 5-tuple network flow
[i psrc, i pdst , proto, bppout , bppin], where i psrc is the source
IP, i pdst is the destination IP, proto is either tcp or udp,
and bppout and bppin are outgoing and ingoing bytes-per-
packets (BPP) statistics. First, we group all network flows
F = { f1, f2, . . . , fk} into flow clusters FC = {FC1, FC2,
. . . , FCm} using the 4-tuple [i psrc, proto, bppout , bppin].
Then, we calculate the number of distinct /16 prefixes of i pdst

(destination diversity) associated with each flow cluster, ddi =
DD(FCi). If ddi is greater than a pre-defined threshold �dd ,
we consider FCi as a P2P MNF cluster, and its source hosts
as P2P hosts. We retain all the network flows within the P2P
MNF clusters for the next component, and eliminate all the
other network flows. As shown in Algorithm 1, we designed
this component using a MapReduce framework [27]. For a
mapper, the input is a set of 5-tuple network flow, and the
output is a set of key-value pairs, where the key is the

4-tuple [i psrc, proto, bppout , bppin], and the value is its
corresponding i pdst . For a reducer, the input is the set of
key-values pairs that outputs by the mapper. Then, the reducer
aggregates all values with the same key to calculate the DD
of each flow cluster, and finally output the detected P2P MNF
based on �dd .

B. Network-Flow Level Mutual Contacts Graph Extraction

This component aims to extract mutual contacts
graph (MCG) using the network-flow level mutual contacts.
We call a pair of P2P network flow clusters are the same
type, if they have the same 3-tuple [proto, bppout , bppin].
As illustrated in Fig. 3, each host might contain one type or
several different types of P2P network flow clusters generated
by either P2P botnets or legitimate P2P applications running
on it. If a pair of the same type of P2P network flow clusters
generated by different hosts, have at least one (network-flow
level) mutual contacts, we create an edge between them in
the corresponding network-flow level MCG.

To be specific, the input is a set of P2P network flow clusters
FC = {FC1, FC2, . . . , FCm}, and their corresponding P2P
network flows, F = { f 1

1 , f 1
2 , . . ., f 1

n1
, f 2

1 , f 2
2 , . . ., f 2

n2
, . . .,

f |FC |
1 , f |FC |

2 , . . ., f |FC |
n|FC| }, where f j

i denotes the flow i of FC j .
The output is a MCG, Gmc = (V , E), where each vertex
vi ∈ V represents network flow cluster FCi and has a DDR
score ddri , and each edge ei j ∈ E represents the existence of
mutual contacts between FCi and FC j and has a nonnegative
MCR weight mcri j . Algorithm 2 shows the detailed steps.

First, for each P2P network flow cluster FCi , we generate
a contact set Ci , that contains all the destination IPs of
its network flows. Each P2P network flow cluster FCi also
contains a flow statistical pattern set Si , which contains all
the 3-tuple [proto, bppout , bppin] of its network flows. Let
DD(Ci) be the set of distinct /16 prefixes of all the IPs in Ci .
Then, ddri and mcri j can be calculated as follows.

ddri = ‖DD(Ci)‖
‖Ci‖ mcri j = ‖Ci ∩ C j‖

‖Ci ∪ C j‖ (1)

Furthermore, as discussed in Section III-C.1, the network
flows from different hosts (or network flow clusters) within
the same network communities (generated by the same type of
P2P botnet or legitimate P2P application) should have similar
statistical patterns. Thus, for each pair of input P2P network
flow clusters, say FCi and FC j , we calculate the intersection
between Si and Sj . If Si ∩ Sj = Ø, then there should be no
edge between FCi and FC j in MCG. Otherwise, they share
at least one network flow statistical pattern, and we calculate
mcri j as shown in equation (1). Let �mcr be a pre-defined
threshold. Then, if mcri j > �mcr , there is an edge between
FCi and FC j , with weight mcri j . Otherwise, there is no edge
between FCi and FC j (i.e., mcri j = 0).

1490 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

Fig. 3. An example of network-flow level mutual contacts graph extraction and community detection. Each triangle represents a network flow cluster, and
the same color triangles represent the same type of network flow clusters. The areas separated by the dash-dot line with different color represents different
communities.

Algorithm 2 Network-Flow Level MCG Extraction
input: FC , F , �mcr

output: Gmc = (V , E)
1: E = Ø, V = Ø
2: for FCi ∈ FC do
3: Ci = Ø
4: Si = Ø
5: end for
6: for f j

i ∈ F do
7: C j ← C j ∪ {i pdst}
8: Sj ← Sj ∪ {[proto, bppout, bppin]}
9: end for

10: for FCi ∈ FC do
11: ddri ← ‖D D(Ci)‖‖Ci‖
12: ver tex vi ←< ddri >
13: V ← V ∪ {vi }
14: end for
15: for ∀ FCi , FC j ∈ FC and i < j do
16: if Si ∩ Sj 	= Ø then
17: mcri j ← ‖Ci∩C j‖

‖Ci∪C j‖ .
18: if mcri j > �mcr then
19: edge ei j ←< mcri j >
20: E ← E ∪ {ei j }
21: end if
22: end if
23: end for
24: return Gmc = (V , E)

C. P2P Botnet Detection

This component aims to detect P2P bots from given
MCG. First, we cluster the bots and the other hosts into
their own communities using a community detection method.
Afterwards, we detect botnet communities using numerical
community behavior analysis. Finally, we use structural com-
munity behavior analysis to further identify or verify each bot
candidate. Algorithm 3 shows the detailed steps.

1) Community Detection: Given MCG Gmc = (V , E),
∀ ei j ∈ E , we have mcri j ∈ [0.0, 1.0], where mcri j = 1.0
means all contacts of FCi and FC j are mutual contacts
and mcri j = 0.0 means there is no mutual contact between

Algorithm 3 P2P Botnet Detection
input: Gmc, �avgddr , �avgmcr

output: Sbot

1: Sbot FCCom = Ø, Sbot FC = Ø, Sbot = Ø
2: Com← Louvain(Gmc)
3: for comi ∈ Com do

4: avgddri ←
∑

v j∈Vcomi
ddr j

‖Vcomi ‖
5: avgmcri ←

2×∑
∀e jk∈Ecomi

mcr jk

‖Vcomi ‖×(‖Vcomi ‖−1)

6: if avgddri ≥ �avgddr and avgmcri ≥ �avgmcr then
7: Sbot FCCom← Sbot FCCom ∪ {comi}
8: end if
9: end for

10: for comi ∈ Sbot FCCom do
11: Sbot FC ← CliqueDetection(comi)
12: for FCi ∈ Sbot FC do
13: for f i

j ∈ FCi do
14: Sbot ← Sbot ∪ {i psrc}
15: end for
16: end for
17: end for
18: return Sbot

FCi and FC j . Furthermore, the same type of P2P network
flow clusters that generated by different bots within the same
botnet tend to have a higher ratio of mutual contacts. As such,
the P2P bots clustering problem can be considered as a
network community detection problem. As shown in Fig. 3,
each host might be running P2P bots or legitimate P2P
applications or both, and each P2P bot or each legitimate P2P
application generates different types of network flow clusters.
Our community detection aims to cluster the same type of
P2P network flow clusters generated by different bots into the
same network flow cluster community. As such, each network
flow cluster should only belong to a single network flow
cluster community, but each host might belong to different
host communities. Also, each botnet might contain several
different network flow cluster communities. Once one network
flow cluster community has been detected as belonging to a
botnet, we consider the corresponding hosts as bots.

ZHUANG AND CHANG: ENHANCED PEERHUNTER: DETECTING P2P BOTNETS 1491

We used Louvain method, a modularity-based commu-
nity detection algorithm [28], due to (a) its definition of a
good community detection result (high density of weighted
edges within communities and low density of weighted edges
between communities) is perfect-suited for our P2P botnet
community detection problem; (b) it outperforms many other
modularity methods in terms of computation time [28]; and
(c) it can handle large network data sets (e.g., the analysis of
a typical network of 2 million nodes takes 2 minutes [28]).

Given Gmc = (V , E) as input, Louvain method outputs a set
of network flow cluster communities Com = {com1, com2,
. . . , com|Com|}, where comi = (Vcomi , Ecomi). Vcomi is a set
of network flow clusters in comi . Ecomi is a set of edges,
where ∀ e jk ∈ Ecomi , we have e jk ∈ E and v j , vk ∈ Vcomi .

2) Botnet Communities Detection: Given a set of commu-
nities Com, for each community comi ∈ Com, we calculate
its avgddri and avgmcri as follows.

avgddri =
∑

v j∈Vcomi
ddr j

‖Vcomi ‖
(2)

avgmcri =
2×∑

∀e jk∈Ecomi
mcr jk

‖Vcomi ‖ × (‖Vcomi ‖ − 1)
(3)

We define two thresholds �avgddr and �avgmcr . ∀ comi ∈
Com, if avgddri ≥ �avgddr and avgmcri ≥ �avgmcr ,
we consider comi as a botnet network flow cluster community.

3) Bot Candidates Detection: Recall from Section III-C.3,
the MCG of botnet communities usually have a structure
of one or several cliques. Therefore, we used a maximum
clique detection method CliqueDetection to verify each bot
network flow cluster from botnet network flow cluster com-
munities, and further identify bot candidates. Each time it tries
to detect one or several maximum cliques on the given botnet
(network flow cluster) communities. If the maximum clique
(at least containing 3 vertices) has been found, we consider
the network flow clusters in that clique as bot network flow
cluster, and run the maximum clique detection algorithm on
the remaining parts, until no more qualified maximum cliques
to be found. Afterwards, we report the corresponding source
hosts of the identified bot network flow clusters as the bot
candidates.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup
1) Experiment Environment: All the experiments were con-

ducted on a PC with an 8 core Intel i7-4770 Processor,
32GB RAM, running 64-bit Ubuntu 16.04 LTS operating
system. Our system was implemented using Java with JDK 8.

2) Data Collection and Analysis Tool: We used three main
datasets: (a) 24 hours network traces of 4 popular legitimate
P2P applications, (b) 24 hours network traces of 5 P2P botnets,
and (c) 24 hours network traces from a Trans-Pacific backbone
line between the United States and Japan as the background
network traces (non-P2P & manually verified P2P).

a) Legitimate P2P network traces (Dp2p): Our legitimate
P2P network traces Dp2p were obtained from the University of
Georgia [8], which collected the network traces of 4 popular
P2P applications for several weeks. We obtained the network

TABLE III

TRACES OF LEGITIMATE P2P NETWORKS (24 hours)

TABLE IV

TRACES OF P2P BOTNETS (24 hours)

TABLE V

TRACES OF BACKGROUND NETWORK

traces of 16 eMule hosts, 16 FrostWire hosts, 14 uTorrent hosts
and 14 Vuze hosts by randomly selecting a set of continuous
24 hours network traces of each host (as shown in Table III).

b) P2P botnets network traces (Dbot): Part of our bot-
nets network traces were from the University of Georgia [8],
containing 24 hours network traces of 13 Storm hosts and
3 Waledac hosts. We also collected 24 hours network traces
of another three P2P botnets, Sality, Kelihos and ZeroAccess.
These network traces were all collected from the hosts man-
ually infected by the binary samples of Kelihos, ZeroAccess,
and Sality obtained from [29]. Our data collection was oper-
ated in a controlled environment, where all malicious activities
were blocked. The same data collection settings were used in
several previous works [2], [4], [8]. We collected the network
traces of 8 Kelihos bots, 8 ZeroAccess bots and 5 Sality bots
(as shown in Table IV).

c) Background network traces (Db
non and Db

p2p):
We used a dataset from the MAWI Working Group Traffic
Archive [7] as our background network traces, containing
24 hours anonymized and payload-free network traces at
the transit link of WIDE (150Mbps) to the upstream ISP
on 2014/12/10 (as shown in Table V). The dataset contains
approximate 407,523,221 flows and 48,607,304 unique IPs.
79.3% flows are TCP flows and the rest are UDP flows.

We investigated the background network traces, and made
our best effort to separate the P2P traffic (Db

p2p) from the non-
P2P traffic (Db

p2p). Since the WIDE dataset was anonymized
and payload-free, it prevented us from using payload analysis
to thoroughly check if P2P traffic, especially P2P Botnet traffic
existing there. Instead, we used port analysis to manually
detect P2P traffic within the background dataset. This is based
on the simple concept that many P2P applications have default
ports on which they function (see [30] for a list of default
network ports of popular P2P applications). We manually
examined all the network flows of each host in the background
network traces. If a host involved in more than five flows using
any of the default P2P port values in either source port or

1492 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

TABLE VI

ACTIVE TIME OF P2P HOSTS WITHIN THE BACKGROUND NETWORK
TRACE (Pi IS THE SET OF P2P HOSTS HAVE NO LESS

THAN i × 15 minutes ACTIVE TIME.)

destination port, we considered the host as a P2P host. After
this procedure, we identified 667 P2P hosts.

One thing worth to be noticed is that despite the whole
background network traces lasting for 24 hours, not all these
P2P hosts were active for the entire 24 hours. P2P hosts
that did not have enough active time, may not produce
sufficient network flows for our system to work (as discussed
in Section V-B). To ensure a fair and rigorous evaluation,
we estimated the active time of each P2P host. We divided
the 24 hours background network traces into 96 15-minute
blocks. If a P2P host had any network flow fell in a block,
we considered it was active in that block. We used the number
of blocks where a P2P host was active to estimate the active
time of each P2P host. Table VI reflects the active time
distribution of these P2P hosts. As shown in Table VI, even
though there were 667 P2P hosts in total, only 4 of them had
been active for the entire 24 hours and 26 of them had been
active for no less than 5 hours.

We used ARGUS [31] to process and cluster network traces
into the 5-tuple format tcp/udp flow.

3) Experimental Dataset Generation: As illustrated in
Fig. 1a, we consider a scenario that an organization has a set
of internal hosts communicating with a set of external hosts
(outside of the organization), and our system is deployed at
the boundary of the organization. Since our original datasets
did not maintain a internal-external network structure while
collecting them, we generated synthetic experimental datasets
by mixing network traces from the original datasets. We con-
sidered a case that contains 10,000 internal hosts. For each
synthetic experimental dataset, the 667 P2P hosts in Db

p2p
were considered as the internal hosts. Another 9,333 internal
hosts were sampled from Db

non , where the traffic of 37 ran-
domly selected hosts were mixed with the traffic of 37 P2P
bots in Dbot , and the traffic of another 60 randomly selected
hosts were mixed with the traffic of 60 P2P hosts in Dp2p .
To make the experimental evaluation as unbiased and chal-
lenging as possible, we propose to sample the internal hosts
and generate the synthetic experimental datasets under the
following two criterions.

a) Maintain a bipartite network structure: Our system
aims to deploy at a network boundary (e.g., firewall, gate-
way, etc.), where the network forms a bipartite structure, and
only network flow within the connections between internal
hosts and external hosts could be captured. Then, the network
in each experimental dataset should maintain a bipartite net-
work structure, where any pair of internal hosts should not
have any communications to each other.

b) Keep the connectedness of mutual contacts graph:
The easiest way to obtain a list of background hosts is to
sample the hosts randomly from Db

non , with the respect of

TABLE VII

SUMMARIES OF EXPERIMENTAL DATASETS (EDS)

bipartite structure. However, since Db
non contains an extremely

large number of hosts, simply sampling hosts randomly will
result in that most of the sampled background hosts do not
have a mutual contact with the other background hosts, which
is much easier for our system to identify botnet communities.
Because less number of mutual contacts among legitimate
hosts means more disconnected legitimate communities in the
corresponding MCG, which happens to be in favor of Louvain
method to detect strongly connected botnet communities.
Therefore, we need to sample a list of internal hosts in a way
that every internal host should have at least one mutual contact
with at least one another internal host.

To follow the criterions described above without making our
evaluation tasks any easier, we propose the following synthetic
experimental dataset generation procedure:
• Use a two-coloring approach to sample the network traces

from Db
non without jeopardize the bipartite network structure

and the connectedness of mutual contacts graph: (a) initialize
two counters, Cblack and Cwhite , to count the number of
hosts colored in black and white respectively; (b) coloring
a random host hi as black, and Cblack plus one; (c) coloring
all contacts of hi as white, and increase Cwhite by the number
of hosts colored as white in this round; (d) for each new
colored host, color its contacts with the opposite color, and
adjust the counters repeatedly, until we have Cblack ≥ 9, 333
and Cwhite ≥ 9, 333; (e) select the colored host set with
exactly 9,333 hosts as the internal hosts, the hosts in the
other set will be the external hosts; and (f) extract the network
traces of the 9,333 internal hosts from Db

non . Then, it forms a
bipartite graph, where each colored host set forms a bipartite
component, and each host shares at least one mutual contacts
with some other hosts from its own bipartite component.
• To maintain a bipartite network structure of botnets and

legitimate P2P hosts, we eliminate all communications among
bots in Dbot , and P2P hosts in Dp2p and Db

p2p .
• To mix Dbot and Dp2p with Db

non , each time we randomly
select 97 internal hosts out of 9,333 background hosts, map
the 97 hosts IPs to 37 bots IPs (Dbot) and 60 legitimate P2P
hosts IPs (Dp2p), and merge the corresponding network traces.

To evaluate our system, 100 synthetic experimental datasets
were generated by running this procedure. Table VII illustrates
the summaries of the experimental datasets (EDs).

B. Evaluation on P2P Network Flow Detection
We evaluated the P2P network flow detection with differ-

ent �dd . We applied this component on all 100 EDs, and
Table VIII shows the average detection rate and false positives

ZHUANG AND CHANG: ENHANCED PEERHUNTER: DETECTING P2P BOTNETS 1493

TABLE VIII

DETECTION RATE AND FALSE POSITIVE RATE FOR DIFFERENT �dd (Pi IS THE SET OF P2P HOSTS WITHIN THE BACKGROUND
NETWORK TRACES THAT HAVE NO LESS THAN i × 15 minutes ACTIVE TIME. ALL THE HOSTS OF 4 LEGITIMATE

P2P APPLICATIONS AND 5 P2P BOTNETS HAVE 24 hours ACTIVE TIME.)

with different �dd , ranging from 2 to 13,500. If �dd is set
too small, non-P2P hosts are likely to be detected as P2P
hosts, which results in many false positives. For instance,
when 2 ≤ �dd ≤ 5, at least 110 non-P2P hosts were falsely
identified as P2P hosts. If �dd is set too large, all P2P hosts
will be removed, which results in false negatives. For instance,
when �dd = 10, 000, most of the P2P hosts were falsely
discarded, and only 18 P2P hosts were detected.

On the other hand, the effectiveness of �dd is also subject
to the active time of P2P hosts. Since if a P2P host has less
active time, it tends to generate less number of P2P network
flows to show enough destination diversity, so that it will not
be distinguished from non-P2P network flows by our system.
For instance, since all the bots and P2P hosts in Dbot and
Dp2p had 24 hours active time, our system can distinguish
them well from the non-P2P network flows. However, not all
the P2P hosts in Db

p2p were active for the entire 24 hours.
As shown in Table VIII, when the active time of a P2P host
was less than 5 hours (not belonging to P20, the set of hosts
have no less than 20 × 15 minutes active time), it was hard
for our system to detect P2P network flows from non-P2P
network flows (�dd < 30). Hence, when considering P2P
hosts that had no less than 12 hours active time (P48), and
setting 30 ≤ �dd ≤ 180, our system detected all P2P hosts
with a small number of false positives (≤ 4/9, 236), which
demonstrated that our P2P network flow detection component
is stable and effective over a large range of �dd settings.

C. Evaluation on Community Detection
We evaluated the performance of community detection with

different �mcr . We applied this component on the remaining
network flows (100 EDs) of the previous component (with
�dd = 30). For each ED, our system generated a MCG Gmc =
(V , E) with a pre-defined threshold �mcr , where each edge
ei j ∈ E contained a weight mcri j ∈ [0.0, 1.0]. Afterwards,
we applied Louvain method (with default resolution 1.0) on
the MCG for community detection. The choice of �mcr would
have an influence on the community detection results.

We evaluated the community detection performance in terms
of (a) the ability to cluster a pair of bots belonging to the
same botnet, (b) the ability to separate a pair of bots coming
from different botnets, and (c) the ability to separate bots and

TABLE IX

COMMUNITY DETECTION RESULTS FOR DIFFERENT �mcr

legitimate applications. As such, we propose three criterions
to evaluate the community detection performance below.

Given a set of bots belonging to n botnets X = {X1, X2, . . . ,
Xn} (the ground truth), and the community detection results,
m communities Y = {Y1, Y2, . . . , Ym}, define Bot Separation
Index (BSI) and Bot Aggregation Index (BAI) as BSI =
a/(a + c) and BAI = a/(a + b), where a is the number of
pairs of bots that are in the same botnet in X , and in the same
community in Y ; b is the number of pairs of bots that are in the
same botnet in X , and in different communities in Y ; c is the
number of pairs of bots that are in different botnets in X , and in
the same community in Y . BSI denotes the degree of that bots
coming from different botnets being separated into different
communities. BAI denotes the degree of that bots coming from
the same botnet being clustered into the same community. Both
BSI and BAI are between 0.0 and 1.0, and the higher the better.
“BSI equals to 1.0” means all different types of bots are well
separated, and “BAI equals to 1.0” means all the same types
of bots are well clustered.

Given p bots and q legitimate applications, define
Bot-Legi timate Separation Index (BLSI) as BLSI =
d/(p × q), where d is the number of pairs of a bot and a
legitimate application being separated into different commu-
nities via our method. BLSI indicates the ability of our method
to separate bots and legitimate applications. BLSI is between
0.0 and 1.0, and the higher the better. “BLSI equals to 1.0”
means all pairs of one bot and one legitimate application are
well separated.

Table IX shows the community detection results with dif-
ferent �mcr , ranging from 0.0 to 1.0. If �mcr is set too
small, there will be more non-zero weight edges, which might
result in less but larger communities. On the other hand,
if �mcr is set too large, most of the vertices will be isolated,
which results in more but smaller communities. For instance,
as �mcr increasing, BSI decreased. When �mcr ≤ 0.4,

1494 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

BSI was around 0.8 to 0.85, meaning one or more botnets have
been split into different communities. It turned out to be our
algorithm separates the Storm botnet (13 bots) into two com-
munities, one containing 10 bots and another containing 3 bots.
Changing �mcr does not affect BSI and BLSI. BSI=1.0 means
our system separates different types of bots into different
communities. BLSI=1.0 means our system separates bots and
legitimate P2P applications into different communities. The
result demonstrated that our system is very effective and
robust in separating bots and legitimate hosts, and separating
different types of bots. Since larger �mcr will result in less
edges in the MCG, which could reduce the execution time
of community detection, we used �mcr = 0.1 as our system
parameter.

D. Evaluation on Botnet Detection
We evaluated the botnet detection component with different

parameter settings. We applied this component on the remain-
ing network flows (100 EDs) of the previous component (with
�dd = 30 and �mcr = 0.1). We assumed that all the host in
the background trace (Db and Db

p2p) were not malicious, and
would be reported as false positives if being detected.

Table X shows the P2P botnet detection results which
supports our idea that the AVGDDR of legitimate P2P network
flow cluster communities is lower than most of the P2P botnets
network flow cluster communities. For instance, the AVGDDR
of all (60/60) legitimate P2P network flow cluster communities
were higher than 0.6, and the AVGDDR of 32 out of 37 botnets
were higher than 0.8. The other 5 turned out to be 5 Sality bots,
which could be detected by AVGMCR. Also, the legitimate
P2P network flow clusters have lower AVGMCR than P2P
bots (i.e., �avgmcr ∈ [0.15, 0.35]). For most of the botnets
(i.e., ZeroAccess, Waledac, Kelihos and Sality), our system
is effective (100% detection rate with zero false positive)
and stable over a large range of �avgddr (i.e., [0.0, 0.6])
and �avgmcr (i.e., [0.15, 0.8]). Storm has a relative small
AVGMCR, hence the effective parameters narrowed down to
�avgddr ∈ [0.0, 0.6] and �avgmcr ∈ [0.15, 0.35].
E. Evaluation on Enhanced PeerHunter

1) Analyzing the System Effectiveness: We applied
Enhanced PeerHunter on 100 EDs, with �dd = 30, �mcr =
0.1, �avgddr = 0.6 and �avgmcr = 0.15, and all the results
were averaged over 100 EDs. Using �avgddr = 0.6 and
�avgmcr = 0.15 was based on our empirical study (shown
in Table X). As illustrated in Table XI, our system identified
all 97 P2P hosts from 10,000 hosts, and detected all 37 bots
from those 97 P2P hosts, with zero false positive, which
demonstrated that Enhanced PeerHunter is effective and
accurate in detecting P2P botnets.

2) Analyzing the System Scalability: The system scalability
is to evaluate the practicality of our systems to deal with
the real world big data. First, we applied Enhanced Peer-
Hunter on 100 EDs of 10,000 internal hosts to analyze the
processing time of each component. Our system has a scalable
design based on efficient detection algorithm and distributed/
parallelized computation. As shown in Table XII, commu-
nity detection and botnet detection had negligible processing

TABLE X

BOTNET DETECTION RESULTS FOR DIFFERENT �avgddr AND �avgmcr .
(ZEROA.: THE DETECTION RATE OF ZEROACCESS;

FP: THE NUMBER OF FALSE POSITIVES.)

time compared with P2P network flow detection and MCG
extraction, since our first two steps (i.e., P2P network flow
detection and MCG extraction) were designed to reduce a
huge amount of the hosts subject to analysis (i.e., 99.03% in
our experiments). The P2P network flow detection component
has linear time complexity, since it scans all the input flows
only once to get the flow clusters and further detect P2P
flow clusters. However, since it is the very first component
to process the input data (data could be large), it still costs
the highest processing time (i.e., 15 minutes). To accom-
modate the growth of a real-world input data, we designed

ZHUANG AND CHANG: ENHANCED PEERHUNTER: DETECTING P2P BOTNETS 1495

TABLE XI

THE NUMBER OF HOSTS IDENTIFIED BY EACH COMPONENT

TABLE XII

ENHANCED PEERHUNTER EXECUTION TIME

Fig. 4. Processing time with different data size and �dd .

and implemented the P2P network flow detection component
using a MapReduce framework, which could be deployed
in distributed fashion on scalable cloud computing platforms
(e.g., amazon EC2). The MCG extraction component requires
pairwise comparison to calculate edges weights. Let n be
the number of P2P network flow clusters subject to analysis
and m be the maximum number of distinct contacts of a
P2P network flow cluster. We implemented the comparison
between each pair of hosts parallelly to handle the growth of n.
If we denote k as the number of threads running parallelly,
the time complexity of MCG extraction is O(n2m

k). For a
given ISP network, m grows over time. Since our system uses
a fixed time window (24 hours), for a given ISP network,
m tends to be stable and would not cause a scalability issue.
Besides, since the percentage of P2P hosts of an ISP network is
relatively small (i.e., 3% [2]), an ISP network usually has less
than 65,536 (/16 subnet) hosts, and most P2P hosts generate
less than 150 P2P network flow clusters (our empirical study),
n would be negligible compared with m. Moreover, since
the waiting stage bots always act stealthily and only make
necessary communications, m also will not be large. We also
tested our system using different sizes (i.e., different number
of internal hosts) of EDs. For each size, we generated 10 EDs,
and recorded the average processing time of our system with
different �dd . As shown in Fig. 4, compared with the size
of datasets, �dd has more influence on the system scalabil-
ity. Because in our P2P network flow detection component,
�dd has an impact on n (the number of P2P network flow
clusters subject to analysis), and larger �dd leads to smaller n,
thus less processing time. For instance, when �dd = 10 or 30,
the increase of processing time, caused by increasing the size

of data, was much less than when �dd = 2. Therefore, our
system is very scalable on different sizes of data with an
appropriate �dd (e.g., 10 or 30). Also, by tuning �dd , our
system has the potential to deal with different size of datasets
in a reasonable time. To summarize, Enhanced PeerHunter is
scalable to handle the real world network data.

3) Analyzing the Effectiveness of System Parameters:
Although we had analyzed the effectiveness of �dd , �avgddr

and �avgmcr within the corresponding components, the effec-
tiveness of combinations among different values of �dd ,
�avgddr and �avgmcr has not been studied. As shown in Fig. 5,
we used precision, recall and false positives to evaluate the
effectiveness of different parameter combinations. As dis-
cussed in Section V-B, �dd is used to detect P2P network flow
clusters. Larger �dd tends to result in more false negatives
(lower recall), and smaller �dd tends to result in more false
positives (lower precision). For instance, changing �dd from
30 or 50 to 10 resulted in 47 or 42 more false positives
(�avgddr = 0.15) as shown in Fig. 5c and Fig. 5f, respectively.
When �dd ∈ {30, 50}, �avgddr ∈ [0.15, 0.35] and �avgddr ∈
[0.2, 0.6], our system yielded 100% detection rate with zero
false positive. Even when �dd = 10, our system can still
work effectively with �avgddr ∈ [0.25, 0.35] and �avgddr ∈
[0.2, 0.6]. This demonstrated our system can work effectively
over several different parameter combinations.

4) Analyzing the “True” False Positives When �dd = 10:
In this section, we discuss about some interesting findings
about the false positives resulted from setting �dd = 10.
As discussed in Section III-C.2, �avgddr is used to capture
the “P2P behavior” of network flows, and �avgmcr is used
to capture the “botnet behavior” of network flows. Hence,
if we use a larger �avgddr (i.e., 0.6) and a smaller �avgmcr

(i.e., 0.0), most of the false positives should be legitimate P2P
host. For instance, in Fig. 5f, when �dd = 10, �avgddr = 0.6
and �avgmcr = 0.0, 115 out of 118 false positives were P2P
hosts (60 from Dp2p and 55 from Db

p2p). On the other hand,
we assume that if we use a smaller �avgddr (i.e., 0.2) and a
larger �avgmcr (i.e., 0.15), some of the false positives might
come from the other types of botnets. As shown in Fig. 5c,
when �dd = 10, �avgddr = 0.2 and �avgmcr = 0.15,
9 out of 47 false positives were not our known legitimate
P2P hosts. We investigated these false positives, with their
anonymized and payload-free network traces. It turned out
that, 4 out of the 9 false positives (i.e., “180.217.2.181”,
“180.217.2.246 ”, “180.217.2.248” and “180.217.2.177”) were
listed in the Barracuda Reputation Block List (BRBL) [32],
a highly accurate list of the IP addresses known to send
spam. Hence, we are convinced that those false positives

1496 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

Fig. 5. Precision, recall and false positives given different �dd , �avgddr and �avgmcr (�mcr = 0.05).

were infected with virus or botnets. These interesting “true”
false positives findings demonstrated that our system has the
potential to detect other unknown botnets.

F. Mimicking Legitimate P2P Application Attacks (MMKL)

Our work is focusing on detecting P2P botnets from legit-
imate P2P applications. If the adversaries (e.g., botmasters)
know our techniques in advance, they might attempt to evade
our system via instructing P2P bots to mimic the behavior of
legitimate P2P applications. Inspired by [2], in this section,
we propose two evasion attacks. All the parameters used in
experiments of this Section were the same as in SectionV-E.

1) Passive MMKL (PMMKL): In this attack, the botmaster
can instruct the bots to passively generate network traffic
together with legitimate P2P applications running on the same
machine at the same time. As such, the botnet traffic will be
overlapped with the legitimate P2P traffic. Since during most
of the time, P2P botnets will be acting stealthily, the legitimate
P2P traffic will dominate the host level behavior. Hence,
the attack could effectively evade the host level group behavior
based methods [4], [5]. Also, the attack does not require the
botnets to generate more or new types of network flows, and
just need to monitor the legitimate P2P application activities,
which can evade certain anomaly-based methods. Since our
detection algorithm is based on network-flow level mutual
contacts graph, which could differentiate the network flows
coming from different P2P applications, it is capable of
detecting P2P bots while the bots traffic and the legitimate
P2P traffic are overlapped on the same host.

To simulate this attack on each ED, we randomly selected
37 hosts out of the 60 legitimate P2P application hosts,

TABLE XIII

COMPARISON OF THE COMMUNITY DETECTION RESULTS BETWEEN
PEERHUNTER [5] AND ENHANCED PEERHUNTER UNDER PMMKL

and randomly mapped their IPs to 37 bots’ IPs. By doing
this, the traffic of each bot were overlapped with the traffic of
one legitimate P2P host. And we made a comparison between
Enhanced PeerHunter and PeerHunter [5] under this attack,
where PeerHunter [5] was using one of its best parameter
setting �dd = 50, �mcr = 0.05, �avgddr = 0.06 and
�avgmcr = 0.2. As shown in Table XIII, all three
community detection indices (i.e., BSI, BAI and BLSI)
decreased around 20% while running PeerHunter under this
attack. However, PMMKL had no effects on Enhanced
PeerHunter’s community detection performance. As shown
in Table XIV, PMMKL completely failed PeerHunter in
detecting ZeroAccess, Waledac and Kelihos, and dramatically
reduced the detection rate of Storm and Sality. On the contrary,
PMMKL had no affects on Enhanced PeerHunter’s P2P botnet
detection performance.

To summarize, compared with our previous work, Enhanced
PeerHunter can detect P2P botnets effectively even if bots are
running on the same host as legitimate P2P applications.

2) Active MMKL (AMMKL): In this attack, the botmaster
can instruct the bots to mimic the behaviors of legitimate
P2P applications actively. For instance, each bot can actively
communicate with an extra set of randomly selected peers

ZHUANG AND CHANG: ENHANCED PEERHUNTER: DETECTING P2P BOTNETS 1497

TABLE XIV

COMPARISON OF THE BOTNET DETECTION RESULTS UNDER NO ATTACK AND PMMKL ATTACK. (* DETECTION RATE)

Fig. 6. The community detection results when conducting AMMKL, and when combining PMMKL and AMMKL. (a) Bot Separation Index (BSI). (b) Bot
Aggregation Index (BAI). (c) Bot-Legitimate Separation Index (BLSI).

Fig. 7. The P2P botnet detection results. (a) P2P botnet detection rate when conducting AMMKL. (b) P2P botnet detection rate when combining PMMKL
and AMMKL. (c) Precision, recall and F-score, when conducting AMMKL, and when combining PMMKL and AMMKL.

to decrease the rate of mutual contacts between a pair of
bots. Compared with PMMKL, in AMMKL, bots do not need
to monitor and wait until some legitimate P2P application
running to work. However, communicating with much more
extra but unnecessary peers will lead the botnets to act less
stealthy and less efficient, and enable certain anomaly-based
methods (e.g., high volumes of network traffic) to detect them.

To simulate this attack on each ED, after the P2P network
flow detection procedure, for each botnet network flow cluster
that communicates with n peers, we inserted certain network
flows communicating with an extra of γ ∗n randomly selected
peers. As shown in Fig. 6, our community detection compo-
nent is robust to AMMKL, since both BAI and BLSI were
unchanged and only BSI dropped a little bit when γ increased.
When combining both attacks, both BSI and BAI dropped a
lot, and BLSI dropped from 1.0 to around 0.88, as γ increasing

from 0.0 to 3.0. This is because when combining both attacks,
as γ increasing, the community detection component tends to
cluster different types of bots into the same community and
separate the same type of bots into different communities. The
good news is, it can still well separate bots and legitimate P2P
hosts into different communities. In summary, even though
combining both attacks makes it harder for our method to
separate different or aggregate the same type of bots, Enhanced
PeerHunter is still robust in separating P2P bots from other
hosts in the community detection process.

As shown in Fig. 7c, both scenarios (i.e., AMMKL and
combining both attacks) did not introduce new false positives
(i.e., precisions equals to 1.0). Compared with conducting
AMMKL, combining both attacks has more influences on the
dropping of detection rate. Fig. 7a and Fig. 7b illustrate the
detection rate of each botnet under two different scenarios,

1498 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

TABLE XV

EFFORT NEEDED FOR DIFFERENT P2P BOTNETS TO COMPLETELY EVADE ENHANCED PEERHUNTER UNDER AMMKL

where the detection rate of different botnets started to drop
around different γ . Table XV shows the analysis of all
5 botnets. Take Storm for instance, to affect the detection
of Storm, each P2P network flow cluster of Storm needs
to communicate with at least an extra 40% of its current
peers, and in order to completely evade our system, γ needs
to be increased to 80%. Consider the fact that each Storm
host generates an average of 67 P2P network flow clusters
in 24 hours, and each network flow cluster communicates to
an average of 740 peers. As such, to completely evade our
system, each Storm host must communicate with at least an
extra of 67×740×80% ≈ 39, 664 peers. In this case, it makes
the P2P botnet less stealthy, less efficient and more exposed to
trigger anomaly-based P2P botnet detection approaches [33].
In conclusion, although our system could not completely
mitigate AMMKL, conducting AMMKL makes the botnets
less stealthy, less efficient and more exposed, which still shows
a winning of our system against P2P botnets.

G. Comparison to Zhang et al. [2]
We compared our system to one of the state of art P2P

botnet detection system Zhang et al. [2]. They proposed a
scalable botnet detection system capable of detecting stealthy
P2P botnets (i.e., in the waiting stage), where no knowledge
of existing malicious behavior is required in advance. The
system first applies a two-step flow clustering approach to
create the fingerprints of hosts that have engaged in P2P
activities. Afterwards, it applies two layers of filtering to
detect potential P2P bots: a coarse-grained filtering to detect
“persistent” P2P hosts that have longer active time of P2P
behaviors, and a fine-grained filtering that applies hierarchical
clustering to group pairs of P2P hosts that have less distance
between their fingerprints. Our system shares many similar-
ities with Zhang et al. [2]. For instance, both systems are
(a) using network flow-based approach, (b) using unsupervised
approach (i.e., no knowledge of existing malicious behaviors
are required and have the potential to detect unknown botnets),
(c) claiming to work while the botnet traffic are overlapped
with the legitimate P2P traffic on the same set of hosts,
(d) designed to have the built-in scalability, and (e) deployed at
the network boundary (e.g., gateway), thus could be evaluated
on the same datasets.

The main differences between our system and
Zhang et al. [2] are listed as follows. First, two systems
are using different network flow features. Zhang et al. [2]
uses the absolute number of bytes and packets of each
flow; Enhanced PeerHunter uses the bytes-per-packet rate of
each flow. Second, two systems are using different approach
to cluster network flows (i.e., at different granularity).
Zhang et al. [2] uses a two-step distance-based clustering

(i.e., k-means, BIRCH) to cluster network flows of similar
feature values; Enhanced PeerHunter clusters the network
flows that have exactly the same feature values. Third, two
systems apply the botnet detection step at different levels
(i.e., host-level or network-flow-level). Zhang et al. [2] uses
the distance between each pair of hosts to detect bots;
Enhanced PeerHunter uses the distance between each pair
of network flows to detect botnet network flow communities
and then further identify the corresponding bots. Last but
not least, two systems are using different heuristics to detect
botnets. Zhang et al. [2] uses an threshold on the height of
the hierarchical clustering dendrogram to detect bot clusters,
which is very sensitive to the experimental datasets (as shown
in Table XIV); Enhanced PeerHunter uses network-flow level
community behavior analysis (i.e., AVGDDR and AVGMCR)
to identify botnet (network flow) communities, which is more
robust to the proposed attacks and can also be extended to
other/new community behaviors.

We implemented a prototype system of Zhang et al. [2],
since Zhang et al. [2] did not have a publicly available
implementation. Most of our implementations followed the
description as in [2], other than the system parallelization,
which has no impact on the system effectiveness evaluation.
The experimental datasets used in both works are also differ-
ent. For instance, we evaluated our system on 100 synthetic
experimental datasets (of different background traffic and
different topology, as described in Section V-A.3) and took
the average results; Zhang et al. [2] was evaluated on single
customized dataset. Furthermore, even though both datasets
use the same 24 hours time window, our datasets have much
more internal hosts (i.e., 10,000 vs. 953), higher legitimate
P2P hosts to P2P bots ratio (i.e., 727:37 vs. 8:16), and more
types of botnets (i.e., 5 vs. 2). To summarize, our experimental
datasets is more challenging and comprehensive.

We applied our implemented Zhang et al. [2] on the same
experimental datasets as Enhanced PeerHunter under two
circumstances (i.e., No Attack and PMMKL). We followed the
same settings for most of the system parameters as described
in [2], such as �BG P = 50, �p2p = 0.5, K = 4, 000,
λ = 0.5. Since the default value of �bot (i.e., 0.95) used
by the original paper, did not perform well on our dataset,
we evaluated Zhang et al. [2] using two other different well
selected values of �bot (i.e., 0.6 and 0.8) that shows better
results.

From the experimental results (Table XIV), we achieved
several observations as follows. First, Zhang et al. [2] is
more sensitive to the experimental dataset. For instance,
Zhang et al. [2] was reported to achieve 100% detection rate
and 0.2% false positive rate on their own datasets (using
�bot = 0.95), while could not achieve similar results on our

ZHUANG AND CHANG: ENHANCED PEERHUNTER: DETECTING P2P BOTNETS 1499

datasets using either the default parameter (�bot = 0.95) or the
well selected parameter (�bot = 0.6 or �bot = 0.8). Second,
as discussed in Section V-E, our system is more stable and
effective over a large range of system parameters (�avgddr

and �avgmcr), while Zhang et al. [2] is more sensitive to its
system parameter (�bot). For instance, Zhang et al. [2] had
higher precision (lower false positives) and lower recall (higher
false negatives) while using �bot = 0.6 comparing with using
�bot = 0.8. Third, our system outperforms Zhang et al. [2]
in terms of the detection rate of different botnets, the overall
precision, recall and false positives. For instance, our system
achieved 100% detection rate with zero false positives under
different circumstances, while Zhang et al. [2] failed to detect
all the bots under both well selected parameters. At last,
our system is more robust to PMMKL attack. For instance,
PMMKL attack had no impact on the effectiveness of our
system, while decreasing the F-score of Zhang et al. [2]
from 97.3% to 75% (�bot = 0.6) or from 74.6% to
72.7% (�bot = 0.8).

VI. DISCUSSION

A. Evasions and Possible Solutions
To avoid being detected by Enhanced PeerHunter, the bot-

master could use a combination of the following three
approaches: (a) adding randomized paddings or junk packets
to influence the bytes-per-packet characteristics for network
flow clustering, (b) reducing the number or rate of destina-
tion diversity, or (c) reducing the number or rate of mutual
contacts. To deal with the randomized spatial-communication
behavior, we could adopt more time-communication features,
such as packet/flow duration and inter-packet delays, or apply
more generalized features, such as the distribution, mean or
standard deviation of bytes-per-packet. The other two evasion
approaches would be the victory of our system. On one hand,
to reduce the number or rate of destination diversity, a bot has
to limit its communication to the network of certain locations,
which degrades the P2P botnet into a centralized fashion.
On the other hand, reducing the number of mutual contacts
means there will be less bots targeting on the same set of
victims, and less bots playing the role as botmasters, which
will jeopardize the effectiveness and the decentralized struc-
ture of a P2P botnet. Also, as shown in Section V-F.2, reducing
the rate of mutual contacts while maintaining the same number
of mutual contacts (i.e., by conducting AMMKL) will make
the botnets less stealthy, less efficient and more exposed to the
other detection systems (e.g., anomaly-based botnet detection
using high volumes of network traffic).

B. The Deployment of Enhanced PeerHunter
In the previous sections, we simply assumed that our

system is deployed at the boundary of a single organization.
In this section, we discuss about the deployment of Enhanced
PeerHunter in three more realistic scenarios.

1) The Number of Bots Within an Organization Is Too
Small: It would be challenging to build the MCG of bot-
net communities (i.e., the number of bots belonging to the
same botnet is less than 3). In this case, we can deploy
multiple Enhanced PeerHunter systems at the boundaries of

multiple organizations, and correlate the network flows col-
lected by those multiple Enhanced PeerHunter systems to build
an appropriate size of MCG to detect botnet communities.

2) The Number of Bots Within an Organization Is Too
Large: The mutual contacts of certain bots might be within
the organization internal network, hence invisible to the single
system monitoring at the network boundary. In this case,
we can deploy multiple Enhanced PeerHunter systems within
the organization, that divide the organization network into
several appropriate size of sub-internal networks. Each system
is responsible for one sub-internal network.

3) The Botmaster Knows the System Deployment Location:
In this way, the botmaster could assign the location of bots
or control the communications of the bots based on the
knowledge of the system deployment location to evade our
system. For instance, the botmaster could assign bots into
different sub-internal networks, and instruct most of the bots
communicate with the others within the same sub-internal
network. In this case, we could use the concept and idea of
Moving Target Defense (MTD) [34] to develop a strategy that
makes it more difficult for botmasters to learn the deployment
locations of our systems, by dynamically changing the settings
or deployments of our systems.

C. Extend Enhanced PeerHunter to Detect Other Botnets
Although Enhanced PeerHunter is designed to detect P2P

botnets, our idea of using mutual contacts graph has the
potential to detect not only unknown botnets, but also the
other types of botnets (e.g., centralized botnets, such as IRC
botnets [18], mobile botnets [35]). Since bots are usually
controlled by machines, rather than humans, bots from the
same botnets tend to communicate with a similar set of peers
or attacking targets. For instance, bots from the same IRC
botnets tend to contact a similar set of C&C servers, while bots
from the same mobile botnets tend to contact a similar set of
satellite servers. Hence, we argue that Enhanced PeerHunter
could be easily extended to detect the other types of botnets.

VII. CONCLUSION

We present a novel community behavior analysis based P2P
botnet detection system, Enhanced PeerHunter, which operates
under several challenges: (a) botnets are in their waiting stage;
(b) the C&C channel has been encrypted; (c) the botnet traffic
are overlapped with legitimate P2P traffic on the same host;
(d) no bot-blacklist or “seeds” are available; (e) none statistical
traffic patterns known in advance; and (f) does not require to
monitor individual host. We propose three types of community
behaviors (i.e., flow statistical features, numerical community
features and structural community features) that can be used to
detect P2P botnets effectively. In the experimental evaluation,
we propose a network traces sampling and mixing method to
make the experiments as unbiased and challenging as possible.
Experiments and analysis were conducted to show the effec-
tiveness and scalability of our system. With the best parameter
settings, our system achieved 100% detection rate with none
false positives. We also propose two mimicking legitimate P2P
application attacks (i.e., PMMKL and AMMKL). The exper-
iment results showed that our system is robust to PMMKL,

1500 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 6, JUNE 2019

and will make the botnets less stealthy, less efficient and more
exposed while conducting AMMKL.

REFERENCES

[1] C. Rossow et al., “SoK: P2PWNED—Modeling and evaluating the
resilience of peer-to-peer botnets,” in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 97–111.

[2] J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz, “Building a
scalable system for stealthy P2P-botnet detection,” IEEE Trans. Inf.
Forensics Security, vol. 9, no. 1, pp. 27–38, Jan. 2014.

[3] H. Hang, X. Wei, M. Faloutsos, and T. Eliassi-Rad, “Entelecheia:
Detecting P2P botnets in their waiting stage,” in Proc. IFIP Netw. Conf.,
May 2013, pp. 1–9.

[4] Q. Yan, Y. Zheng, T. Jiang, W. Lou, and Y. T. Hou, “Peerclean: Unveiling
peer-to-peer botnets through dynamic group behavior analysis,” in
Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr./May 2015,
pp. 316–324.

[5] Di. Zhuang and J. M. Chang, “Peerhunter: Detecting peer-to-peer botnets
through community behavior analysis,” in Proc. IEEE Conf. Dependable
Secure Comput., Aug. 2017, pp. 493–500.

[6] B. Coskun, S. Dietrich, and N. Memon, “Friends of an enemy: Iden-
tifying local members of peer-to-peer botnets using mutual contacts,”
in Proc. 26th Annu. Comput. Secur. Appl. Conf. (ACSAC) Austin,
TX, Dec. 2010, pp. 131–140.

[7] (2018). Mawi Working Group Traffic Archive. [Online]. Available:
http://mawi.wide.ad.jp/mawi/ditl/ditl201412/

[8] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining for
unwanted P2P traffic,” J. Inf. Secur. Appl., vol. 19, no. 3, pp. 194–208,
Jul. 2014.

[9] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee,
“Bothunter: Detecting malware infection through IDS-driven dialog
correlation,” in Proc. 16th USENIX Secur. Symp., vol. 7, Aug. 2007,
pp. 1–16.

[10] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “BotGrep:
Finding P2P bots with structured graph analysis,” in Proc. USENIX
Secur. Symp., Aug. 2010, pp. 95–110.

[11] J. Wang and I. C. Paschalidis, “Botnet detection based on anomaly and
community detection,” IEEE Trans. Control Netw. Syst., vol. 4, no. 2,
pp. 392–404, Jun. 2017.

[12] S. Venkatesan, M. Albanese, A. Shah, R. Ganesan, and S. Jajodia,
“Detecting stealthy botnets in a resource-constrained environment using
reinforcement learning,” in Proc. 4th ACM Workshop Moving Target
Defense, Oct. 2017, pp. 75–85.

[13] S. Karuppayah, L. Böck, T. Grube, S. Manickam, M. Mühlhäuser, and
M. Fischer, “Sensorbuster: On identifying sensor nodes in P2P botnets,”
in Proc. Int. Conf. Availability, Rel. Secur. (ARES), Aug. 2017, p. 34.

[14] F. Haddadi and A. N. Zincir-Heywood, “Botnet behaviour analysis: How
would a data analytics-based system with minimum a priori information
perform?” Int. J. Netw. Manage., vol. 27, no. 4, p. e1977, Jul./Aug. 2017.

[15] W. Lu, G. Rammidi, and A. A. Ghorbani, “Clustering botnet commu-
nication traffic based on n-Gram feature selection,” Comput. Commun.,
vol. 34, no. 3, pp. 502–514, Mar. 2011.

[16] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, “Detecting
Android malware leveraging text semantics of network flows,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1096–1109, May 2018.

[17] M. Roesch et al., “Snort—Lightweight intrusion detection for networks,”
in Proc. LISA 13th Syst. Admin. Conf., Nov. 1999, vol. 99, no. 1,
pp. 229–238.

[18] X. Ma et al., “A novel IRC botnet detection method based on packet
size sequence,” in Proc. IEEE Int. Conf. Commun., May 2010, pp. 1–5.

[19] S. Khanchi, A. Vahdat, M. I. Heywood, and A. N. Zincir-Heywood,
“On botnet detection with genetic programming under streaming data
label budgets and class imbalance,” Swarm Evol. Comput., vol. 39,
pp. 123–140, Apr. 2018.

[20] H. Zhang, C. Papadopoulos, and D. Massey, “Detecting encrypted botnet
traffic,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 3453–3458.

[21] J. Jianguo, B. Qi, S. Zhixin, Y. Wang, and B. Lv, “Botnet detection
method analysis on the effect of feature extraction,” in Proc. IEEE
Trustcom/BigDataSE/ISPA, Aug. 2016, pp. 1882–1888.

[22] X. Ma, J. Zhang, J. Tao, J. Li, J. Tian, and X. Guan, “DNSRadar:
Outsourcing malicious domain detection based on distributed cache-
footprints,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1906–1921, Nov. 2014.

[23] W. Chen, X. Luo, and A. N. Zincir-Heywood, “Exploring a service-
based normal behaviour profiling system for botnet detection,” in Proc.
IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 947–952.

[24] H.-S. Wu, N.-F. Huang, and G.-H. Lin, “Identifying the use of
data/voice/video-based P2P traffic by DNS-query behavior,” in Proc.
IEEE Int. Conf. Commun., Jun. 2009, pp. 1–5.

[25] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer net-
works,” in Proc. 6th ACM SIGCOMM Conf. Internet Meas., Oct. 2006,
pp. 189–202.

[26] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. C. Freiling, “Mea-
surements and mitigation of peer-to-peer-based botnets: A case study
on storm worm,” in Proc. 1st USENIX Workshop Large-Scale Exploits
Emergent Threats, Apr. 2008, vol. 8, no. 1, pp. 1–9.

[27] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[28] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech. Theory Exp.,
vol. 2008, no. 10, p. P10008, Oct. 2008.

[29] (2018). Malware Sample Sources for Researchers. [Online]. Available:
https://zeltser.com/malware-sample-sources/

[30] T. Karagiannis, A. Broido, M. Faloutsos, and K. C. Claffy, “Transport
layer identification of P2P traffic,” in Proc. 4th ACM SIGCOMM Conf.
Internet Meas., Oct. 2004, pp. 121–134.

[31] (2018). Argus: Auditing Network Activity. [Online]. Available:
http://qosient.com/argus/

[32] (2018). Barracuda Reputation Block List (BRBL). [Online]. Available:
http://www.barracudacentral.org/rbl/

[33] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and
botnet detection,” in Proc. 3rd Int. Conf. Emerg. Secur. Inf. Syst.
Technol., Jun. 2009, pp. 268–273.

[34] M. Albanese, S. Jajodia, and S. Venkatesan, “Defending from stealthy
botnets using moving target defenses,” IEEE Security Privacy, vol. 16,
no. 1, pp. 92–97, Jan./Feb. 2018.

[35] S. Zhao, P. P. Lee, J. Lui, X. Guan, X. Ma, and J. Tao, “Cloud-based
push-styled mobile botnets: A case study of exploiting the cloud to
device messaging service,” in Proc. 28th Annu. Comput. Secur. Appl.
Conf., Dec. 2012, pp. 119–128.

Di Zhuang (S’15) received the B.E. degree in
computer science and information security from
Nankai University, China. He is currently pursu-
ing the Ph.D. degree in electrical engineering with
the University of South Florida, Tampa, FL, USA.
His research interests include cyber security, social
network science, privacy enhancing technologies,
machine learning, and big data analytics.

J. Morris Chang (SM’08) received the Ph.D. degree
from North Carolina State University. He is cur-
rently a Professor with the Department of Electrical
Engineering, University of South Florida, Tampa,
FL, USA. His past industrial experiences include
positions at Texas Instruments, Microelectronic Cen-
ter of North Carolina, and AT&T Bell Labs. His
research interests include: cyber security, wireless
networks, and energy efficient computer systems.
In the last six years, his research projects on cyber
security have been funded by DARPA. He is cur-

rently leading a DARPA project under a Brandeis program focusing on
privacy-preserving computation over the Internet. He received the University
Excellence in Teaching Award from the Illinois Institute of Technology
in 1999. He is a Handling Editor of the Journal of Microprocessors and
Microsystems and an editor of the IEEE IT PROFESSIONAL.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

