
3916 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 11, NOVEMBER 2017

Cost-Effective Kernel Ridge Regression
Implementation for Keystroke-Based

Active Authentication System
Pei-Yuan Wu, Chi-Chen Fang, Jien Morris Chang, Senior Member, IEEE, and Sun-Yuan Kung, Fellow, IEEE

Abstract—In this paper, a fast kernel ridge regression (KRR)
learning algorithm is adopted with O(N) training cost for large-
scale active authentication system. A truncated Gaussian radial
basis function (TRBF) kernel is also implemented to provide
better cost-performance tradeoff. The fast-KRR algorithm along
with the TRBF kernel offers computational advantages over the
traditional support vector machine (SVM) with Gaussian-RBF
kernel while preserving the error rate performance. Experimental
results validate the cost-effectiveness of the developed authentica-
tion system. In numbers, the fast-KRR learning model achieves
an equal error rate (EER) of 1.39% with O(N) training time,
while SVM with the RBF kernel shows an EER of 1.41% with
O(N2) training time.

Index Terms—Active authentication, cost-effective, kernel
methods, kernel ridge regression (KRR), keystroke, support
vector machine (SVM), truncated-radial basis function (TRBF).

I. INTRODUCTION

THE PRESENT user name and password authentica-
tion system has many potential weaknesses [1], [2]

such as password disclosure, easy-to-crack passwords, dictio-
nary attacks, etc. The one-time log-in authentication system
is also vulnerable to session hijacking, where an impostor
may gain access to system resources by obtaining authenti-
cated open sessions that are not properly monitored. Active
authentication provides constant nonintrusive authentication
by continuously monitoring user-specific physiological [3]–[5]
and behavioral [6], [7] biometrics. The physiological features
include face [8], [9], retinal or iris patterns [10], [11], finger-
prints [12], palm topology [13], gait [14], [15], hand geometry,

Manuscript received January 17, 2016; revised April 7, 2016; accepted
June 27, 2016. Date of publication August 2, 2016; date of current version
October 13, 2017. This work was supported by the Active Authentication
Program of Defense Advanced Research Projects Agency under Grant
FA8750-12-2-0200. The views, opinions, and/or findings contained in this arti-
cle/presentation are those of the author/presenter and should not be interpreted
as representing the official views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the Department of Defense.
This paper was recommended by Associate Editor P. Tino.

P.-Y. Wu is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08540 USA (e-mail: peiyuanwu1987@gmail.com).

C.-C. Fang and J. M. Chang are with the Department of Electrical and
Computer Engineering, Iowa State University, Ames, IA 50011 USA (e-mail:
cfang@iastate.edu).

S.-Y. Kung is with the Department of ECE, Princeton University, Princeton,
NJ 08540 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2016.2590472

wrist veins and thermal images, etc. The behavioral fea-
tures include voice-prints, handwritten signatures, keystroke
dynamics, etc.

Physiological features in general have lower error rates than
behavioral features, since physiological features do not vary
along time as behavioral features do. However, special tools
such as iris scanner or video cameras are required to extract
such physiological features. This limits the applicability of
such techniques due to the increased-cost as well as the lack of
current infrastructure. Keystroke dynamics, on the other hand,
can be unobtrusively collected using a standard keyboard.

Keystroke dynamics is a behavioral biometric, by which
users can be distinguished by analyzing their typing
rhythms on a keyboard. Scientists have noticed that neuron-
physiological factors involved in handwritten signatures also
produce unique keystroke patterns [16], [17]. However,
keystroke timing information shows strong variability which
depends on the environment as well as the human physiolog-
ical and psychological conditions.

The study of monitoring keystroke dynamics as an addi-
tional layer of protection to the traditional password system
has remained active since 1980’s [2]. In the earlier work,
researchers focused on predefined and structured typing sam-
ples, also referred to as fixed-text analysis. Fixed-text analysis
is mainly used for static authentication during the login stage
as password hardening. However, it is not suitable for con-
tinuous authentication, since it is unrealistic and intrusive
to enforce users to type-in the predefined strings repeatedly
throughout the session.

Since the late 1990s, free-text analysis has drawn many
researchers’ attention, which aims to recognize users by the
text they freely typed in their daily interaction with the
computer. The free-text analysis is suitable for continuous
authentication since the data can be collected continuously
and unobtrusively throughout the session. Furthermore, free-
text analysis allows the user profile to be adaptively refined
by continuously collecting the keystroke patterns from users’
daily task. However, the unstructured and sparse nature of the
information conveyed by keystroke timing data is always a
challenge in free-text analysis.

In this paper, we introduce kernel methods into large-scale
free-text active authentication system. The learning and pre-
diction system is developed based on a free-text keystroke
dataset collected from approximately 2000 participants, which
is the largest to the best of our knowledge. Kernel methods
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are well established in various supervised and unsupervised
learning problems [18]–[22]. The basic idea behind the kernel
learning approach is to nonlinearly transform the training
vectors in the original space onto a high-dimensional intrin-
sic space [23], characterized by its dimension J, named as
the intrinsic degree. Thereafter, various existing linear learn-
ing and prediction models can be directly applied to the
intrinsic training vectors. If the learning algorithm meets the
Mercer’s condition [24], or the so-called learning subspace
property [23], then the algorithm can be elegantly mapped to
the empirical space [23]. This is known as the “kernel trick.”

In large-scale authentication system, the data size N tends
to become enormously large, rendering it extremely costly
to perform kernel-based learning and prediction algorithms
in the empirical space. For example, the complexity of con-
ducting machine learning in the empirical space will be,
respectively, in the order of �(N2) for support vector machine
(SVM) [19], [21], [23] and of O(N3) for the kernel ridge
regression (KRR) [25], [26] learning models. This implies a
very heavy computational burden to retain the adoption of the
(default) Gaussian radial basis function (RBF) kernel. In con-
trast, if the intrinsic degree may be tuned to a reasonable level
such that J � N, then it will become much more cost effective
to perform kernel learning in the intrinsic space, as opposed
to the empirical space [27].

In this paper, we apply the efficient kernel learning algo-
rithm proposed by Kung and Wu [27] to large-scale active
authentication system. By approximating the well known RBF
kernel with truncated-RBF (TRBF) kernel, the original KRR
problem is approximated by a linear least-squares regression
problem in the finite-dimensional kernel-induced feature space
of TRBF kernel to speed up both training and prediction times.

The remainder of this paper is organized as follows.
Section II is devoted to literature survey. In Section III, we
describe the features collected that serve as the cognitive
factors in keystroke dynamics, as well as the authentication
system architecture. In Section IV, we describe the kernel-
based learning algorithms applied in the authentication system,
namely the SVM and KRR algorithms. In Section V, we intro-
duce the concept of TRBF kernel as an approximation of the
Gaussian-RBF kernel, as well as a fast-KRR learning and pre-
diction algorithm. In Section VI, a classifier fusion method
is described to augment votes from multiple classifiers into
final decision. The experimental results based on a large-scale
free-text keystroke dataset is provided in Section VII. The
discussions and conclusions are summarized in Section VIII.

II. RELATED WORK

A. Fixed-Text Analysis

In Obaidat and Sadoun’s work [28], they compared the
performance of various pattern recognition algorithms for
login string keystroke detection, including fuzzy ARTMAP,
RBF networks, learning vector quantization, neural network
paradigms, back-propagation with sigmoid transfer function,
hybrid sum-of-products, potential function, Bayes’ rule, etc.
Though a best misclassification error of 0% is reported
using certain pattern recognition paradigms, it is questionable

regarding the statistical significance of their results in large-
scale authentication systems, since their study only involves
15 participants.

In Bergadano et al.’s work [29], 4% false reject rate (FRR)
and 0.01% false alarm rate was reported based on the
keystroke patterns from 154 individuals, each typing a fixed-
text of 683 characters for five times. For each typing string
sample, the trigraphs within are ordered according to their
time durations. They then define a distance measure between
two typing samples based on the degree of disorder between
their trigraph orderings. A new string sample is classified as
belonging to the legitimate user whose known samples have
the smallest average distance.

In Sheng et al.’s work [30], a 9.62% FRR and 0.88% false
alarm rate was reported based on a dataset of 43 users, each
typing a fixed string of 37 characters for nine times. To attain
sufficient training samples, they apply Monte Carlo approach
to synthesize training samples by perturbing the existing train-
ing samples with Gaussian distribution. They then split the raw
and synthetic training samples into multiple subsets, where the
monograph and digraph features are extracted to train eight
parallel decision trees for each legitimate user. The decision
is then based on majority vote.

In Hosseinzadeh and Krishnan’s work [31], they combined
the keystroke latency feature with Gaussian mixture model-
based verification system. In their work, each of the 41
participants uses his own full name as the authentication string,
and an equal error rate (EER) of 4.4% was reported.

In Killourhy and Maxion’s work [32], they collected
keystroke data from 51 participants typing 400 passwords
each, and then implemented and evaluated 14 detectors from
the past keystroke-dynamics and pattern-recognition literature.
The three top-performing detectors in their work achieve EER
between 9.6% and 10.2%. Their results constitute an excellent
benchmark for comparing detectors and measuring process in
fixed-text analysis literature.

B. Free-Text Analysis

An excellent literature survey on free-text analysis litera-
ture can be found in Alsultan and Warwick’s article [33].
Monrose and Rubin’s work [34] was among the earliest on
the free-text keystroke detection. They collected typing sam-
ples from 42 users over a period of seven weeks in various
computing environments. For each user, the means of various
digraphs are computed to form a user profile. The identity of
an unknown user is then classified as the legal user whose
profile, as represented by a vector of digraph means, has the
smallest Euclidean distance. To reduce the search time in the
recognition process, they clustered the legal users’ profiles
using a maxi-mini-distance algorithm, with their typing speed
as the clustering criteria. This, however, poses an obvious lim-
itation that reclustering is needed whenever new legal user
profile is added or modified. An accuracy of 90% is reported
for fixed-text detection, but only 23% for free-text detection.

In Ahmed and Traore’s work [35], each legitimate user has
a profile of two neural networks that store the monograph and
digraph time duration information. In recognition phase, a new
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user’s monograph and digraph time intervals are extracted,
which are then compared to the corresponding values pre-
dicted by the neural networks of the claimed identity’s profile.
They collected typing samples from 53 users over a period of
five months, and reported an EER of 2.46%.

Gunetti and Picardi [6] extended Bergadano et al.’s
work [29] into free-text keystroke authentication. Based on
a free-text keystroke dataset of 205 participants, an EER of
1% was reported. Despite the very low error rates, the com-
putational costs for identifying users were expensive since the
test sample is compared to all typing samples from all users in
the database. In their experiment, it takes about 140 s to com-
pare a new sample against 40 user profiles each containing 14
typing samples on a Pentium IV at 2.5 GHz. Furthermore, the
authentication depends not only on the legal user in query, but
also on other legal users. These limit its scalability in large
networks.

Villani et al. [36] investigated the case of using different
keyboards (desktop and laptop) as well as different context
modes (fixed-text and free-text). There were a total of 118
participants. For fixed-text mode each participant copied a
predefined text of approximately 650 keystrokes for at least
five times; for free-text mode each participant typed five arbi-
trary emails of at least 650 keystrokes. The extracted features
include the averages and standard deviations of key press dura-
tion times as well as digraph latencies. They also consider
percentages of key presses of special keys. Those features
are concatenated into a vector, by which an Euclidean dis-
tance criteria is used to compare the extracted features between
participants for identification purposes. They acquired 99.5%
identification accuracy among 36 users, and 93.3% on a larger
population of 93 users, as long as the users stick to the same
keyboard and context mode. It was found in their study that the
identification accuracy decreases drastically when the users use
different context modes or keyboards in the training and test-
ing phases. Furthermore, they found free-text context results
in a decreased accuracy as compared to the fixed-text context.

C. Discussion

It appears that except the work by Gunetti and Picardi [6]
and Villani et al. [36], most of the previous text analysis
schemes proposed in literature are based on datasets with
limited scales, mainly less than 60 participants [37]–[45].
From an algorithmic and system architecture design point of
view, a data set collected from several tens of participants
may be sufficient. In real world applications, however, an
authentication system can easily grow beyond thousands of
users, with keystroke dynamics constantly collected during the
users’ daily work. In this paper, an active authentication learn-
ing and prediction system is developed based on a free-text
keystroke dataset collected from approximately 2000 partici-
pants, which is much larger than the datasets reported in the
works by Gunetti and Picardi [6] (with 205 participants) and
Villani et al. [36] (with 118 participants). To the best of our
knowledge, the free-text keystroke dataset studied in this paper
is the largest in literature.

Some researchers may attempt to use the same keyboard
throughout the data collecting process. As pointed out by

Villani et al.’s work [36], the identification accuracy is prone
to keyboard selection. In real world applications, it may be
unrealistic to assume the keystroke dynamics to be collected
from keyboards with the same keyboard model. In this paper,
the keystroke dynamics are collected through browser app,
where no assumptions are made on the keyboard from which
the keystroke dynamics are collected.

III. SYSTEM OVERVIEW

A. Cognitive Factors in Keystroke Dynamics

By measuring the time stamps at each key press and key
release events, various features can be extracted from the
keystroke dynamics such as the dwell time of a monograph
(the time length of a key-press); the time interval between two
consecutive keystrokes in a digraph; the time duration between
the first and last keystrokes in a trigraph or n-graph, etc.

Conventional keystroke dynamics usually do not distinguish
the timing difference between different words, but only con-
sider a collection of digraph latencies. Fig. 1(a) illustrates a
collection of digraph latencies (“re”) observed from the same
user, but are collected from four different words: “really,”
“were,” “parents,” and “store.” It shows that a user’s typing
behavior is not only dependent on digraphs, but also highly
dependent on words. On the other hand, Fig. 1(b) illustrates
the typing pattern of two users on the same word “really.” It
shows that the keystroke pattern of a word as a whole is user
dependent.

In the work by Chang et al. [46] and Wu et al. [47], instead
of breaking words into digraphs whose statistics are analyzed
individually, they consider the correlation information between
multiple keystroke intervals within a word, that is not revealed
by digraph features. However, one serious concern is the lack
of samples for each word, as the massive amount of English
vocabulary dilutes the number of samples available for one
particular word. Except for several frequently-used vocabu-
lary such as “and,” “are,” “the,” “to,” etc., the lack of samples
renders any pattern recognition technique to yield statistically
sound decision rules. In order to preserve the correlation infor-
mation between keystroke intervals within a word, while still
retain sufficient amount of training samples, in this paper
we consider the correlation between the three consecutive
keystroke time intervals in each trigraph.

More elaborately, in contrast to [6] which usually considered
the total time duration of a trigraph, in this paper a trigraph
is represented by a 3-D vector, where each element in the
vector is a time interval between two consecutive keystrokes.
For instance, the word “really” which contains six consecutive
time intervals

r
t1− e

t2− a
t3− l

t4− l
t5− y

t6− (space)

will be separated into four trigraphs each represented by a
3-D vector, namely “rea”(t1t2t3), “eal”(t2t3t4), “all”(t3t4t5), and
“lly”(t4t5t6).

B. System Architecture

The authentication system is user-specific, where for each
legitimate user a profile is trained to recognize him as the only
legal user. The authentication process only involves comparing
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Fig. 1. (a) Digraph “re” from the same user in different words. (b) Two
users typing the same word “really.”

the received sample to the user profile of the claimed iden-
tity, and is independent of other users’ profiles in the system.
The separated user profiles make it easier to update the sys-
tem if the individual typing patterns change over time, and
the entire system does not need to be retrained to add new
users. Furthermore, the prediction time does not depend on
the number of user profiles in the system.

As illustrated in Fig. 2, the user profile of a legitimate user A
contains a collection of most frequent trigraphs TA, where each
trigraph w ∈ TA accompanies a classifier hAw that evaluates
user A’s keystroke typing pattern of trigraph w. In continuous
authentication process where an user B claims the identity of
user A and types a word of M ≥ 3 characters c1c2 · · · cM , a
total of M − 2 trigraphs wi = cici+1ci+2, i = 1, . . . , M − 2
will be collected. If a trigraph wi is one of the most frequent
trigraphs by user A, namely wi ∈ TA, the trigraph classifier
hAwi will give a vote on whether or not user B should be
authenticated as user A. The votes from all the trigraphs in
TA that user B types are then collected and weighted summed
to arrive at the final decision. The details for determining the
weights are discussed in Section VI.

IV. LEARNING MODEL FORMULATION

To train the decision boundary of a trigraph classifier hAw

which summarizes user A’s typing behavior on trigraph w, we
formulate a binary classification problem by partitioning all
training samples of trigraph w into two classes. The positive
(legitimate) class comprises of samples collected from user A,
while the negative (impostor) class is composed of samples
from all users other than A.

Fig. 2. Authentication system architecture.

Suppose there are N samples of trigraph w available for
training, the training data set can be represented as D =
{(xi, yi)}N

i=1, where xi ∈ R
3 is the feature vector and yi ∈ {±1}

is the label, indicating the sample either belongs to the positive
class (yi = +1) or negative class (yi = −1).

A. Kernel Methods

The basic insight behind kernel trick is to nonlinearly trans-
form patterns into some high-dimensional feature space, where
various linear pattern recognition methods apply. The high-
dimensional feature space as well as the nonlinear mapping is
determined by a kernel function that describes the similarity
between pairwise samples, which should satisfy Mercer [24]
condition. By Mercer’s Theorem [24], a kernel function that
satisfies Mercer’s condition [24] can be represented as the
inner product in a kernel-induced feature space H, namely
k(x, x′) = 〈φ(x),φ(x′)〉H, where φ(x) is some fixed mapping
to H. Common examples include the Gaussian RBF kernel

kRBF
(
x, x′) = exp

(

−
∥∥x − x′∥∥2

2σ 2

)

(1)

and the polynomial kernel

kPoly_p(x, x′) =
(

1 + xTx′

σ 2

)p

. (2)

B. Kernel Ridge Regression

Denote kernel-based regression function

h(x) = 〈u,φ(x)〉H. (3)

The design objective for KRR [48]–[51] is to find a deci-
sion vector u ∈ H that minimizes the regularized empirical
risk [26]

min
u∈H

N∑

i=1

L(h(xi), yi) + ρ‖u‖2
H. (4)

In dual variables [52], the regularized empirical risk
[see (4)] can be rewritten as

min
a∈RN

N∑

i=1

L(h(xi), yi) + ρaTKa (5)

where [K]ij = k(xi, xj) is the kernel matrix, a = [a1 · · · aN]T ,
and

h(x) =
N∑

i=1

aik(xi, x). (6)
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C. Class Dependent Costs for Imbalanced Data Set

Consider the weighted squared error empirical risk in the
following form:

L(h(x), y) = c(y)(h(x) − y)2 (7)

where c(y) ∈ R
+ is a class-dependent weight. The regularized

empirical risk becomes

min
a∈RN

N∑

i=1

c(yi)

⎛

⎝
N∑

j=1

ajk
(
xj, xi

)− yi

⎞

⎠

2

+ ρaTKa

= min
a∈RN

‖Ka − y‖2
C + ρaTKa (8)

where ‖r‖2
C = rTCr is the Mahalanobis norm, C is a diagonal

matrix with Cii = c(yi), and y = [y1 · · · yN]T . Since (8) is
convex and differentiable, it can be minimized by setting its
derivative with respect to a equal to zero, giving the optimal
solution

a =
(

K + ρC−1
)−1

y. (9)

Since the positive class contains only the legitimate user while
the negative class contains all other users as impostors, the
binary training data set is highly imbalanced in nature, where
the positive class is outnumbered by the negative class. To
avoid tendency for classifiers originally designed for balanced
data sets to overlook the minorities and give poor results, we
impose class-dependent costs and assign higher costs for mis-
classifying a positively-labeled sample. The class-dependent
costs could be also based on the false-positive and false-
negative costs, or on the prior probability of an impostor in
practice for a more decision-theoretic approach. In this paper,
the costs for misclassifying positive/negative samples are set to
be inversely proportional to their population. More precisely,
let N+, N− be the number of samples in positive/negative
classes, respectively, we take

c(+1) = N

2N+
, c(−1) = N

2N−
. (10)

D. Class Dependent Costs for SVM

To impose class dependent costs on SVM, we consider
weighted hinge loss as empirical risk

L(h(x), yi) = c(y)
[
1 − y(h(x) − y)

]
+.

The regularized empirical risk function [see (4)] becomes

minimize
ρ

2
‖u‖2

H +
N∑

i=1

c(yi)ξi

subject to yi(〈u, φ(xi)〉H + b) ≥ 1 − ξi

variables u ∈ H, b ∈ R, ξi ≥ 0, i = 1, . . . , N (11)

which can be solved by LIB-SVM [53] with class-dependent
cost parameters (c(yi)/ρ), more explicitly

minimize
1

2
αTKα − eTα

subject to yTα = 0

variables 0 ≤ αi ≤ c(yi)

ρ
, i = 1, . . . , N. (12)

V. IMPROVING CLASSIFICATION COMPLEXITY

OF KERNEL-BASED CLASSIFIERS

Based on our previous work [27] on cost-efficient KRR
algorithms, our system enables tradeoff between classifica-
tion/learning complexity and accuracy performance by means
of selecting appropriate finite decomposable kernel function.

A. Decision Function in Kernel Induced Feature Space

For finite decomposable kernel function, whose kernel-
induced feature space H ⊆ R

J has finite dimensions and
Euclidean inner product

k
(
x, x′) =

J∑

j=1

φ(j)(x)φ(j)(x′) = φ(x)Tφ
(
x′). (13)

The regression function can be rewritten as

h(x) =
N∑

i=1

aiφ(xi)
Tφ(x) = uTφ(x) (14)

where the decision vector u = ∑N
i=1 aiφ(xi) can be precom-

puted in the learning phase.
Given a test pattern x, it requires O(J) operations to produce

all elements of φ(x), and another O(J) operations to compute
the inner product uTφ(x). Therefore the total classification
complexity is O(J), which is independent of N.

In this paper, one important kernel in consideration is the
pth order polynomial kernel [see (2)], abbreviated as POLY_p,
whose basis functions take the following form:

φ(j)(x) =
√

p!

(p − �)!

M∏

m=1

1√
dm!

(
x(m)

σ

)dm

0 ≤ � ≤ p, � = d1 + · · · + dM. (15)

There are J = J(p) = ((M + p)!/M!p!) different combinations.
The flexibility in classification schemes results in a classi-

fication complexity of O(min(NM, J)). More elaborately, for
small datasets with less number of training samples N, (6) is
adopted with a classification cost of O(NM). On the contrary,
for large datasets, one may adopt (14) instead of (6) to achieve
a O(J) classification cost, which is constant and independent
of the size of the training dataset.

B. Finite p-Degree Approximation of RBF Kernel

The TRBF kernel [27] is defined as

kTRBF
(
x, x′) = exp

(
−‖x‖2

2σ 2

)( p∑

�=1

1

�!

(
xTx′

σ 2

)�
)

× exp

(
−‖x′‖2

2σ 2

)

= φ(x)Tφ
(
x′) (16)

where each basis function takes the following form:

φ(j)(x) = exp

(
−‖x‖2

2σ 2

) M∏

m=1

1√
dm!

(
x(m)

σ

)dm

0 ≤ d1 + · · · + dM ≤ p. (17)
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The tradeoff between accuracy performance and computa-
tion efficiency highly depends on order p and its intrinsic
dimension J = J(p), which is identical to that of polynomial
kernels. In this paper, we refer to TRBF kernels with order
p as TRBF_p. Note that TRBF is simply a Taylor expan-
sion approximation of RBF. For a more sophisticated RBF
approximation (see [54]).

C. Comparison Between POLY and TRBF Kernels

Despite the similar appearance between POLY and TRBF
kernel [see (15), (17)], they have the following distinctions.

1) POLY_p has an additional multiplication factor√
(p!/(p − �)!), which increases with the monomial

order � and hence amplifies the high-order terms. That
is to say, TRBF kernel imposes less weights on high
order terms than polynomial kernels.

2) TRBF_p has an additional multiplication factor
exp(−(‖x‖2/2σ 2)), which forces its basis functions
[see (17)] to converge to zero as the magnitude of x
grows to infinity, making it more suitable for forming
closed, local decision boundaries. On the contrary, the
basis functions deduced by POLY_p [see (15)] will
grow unbounded as ‖x‖ grows to infinity, making it
more sensitive to outliers.

3) TRBF_p converges to the commonly adopted RBF ker-
nel as degree p increases toward infinity. On the contrary,
POLY_p diverges as degree p increases toward infinity.

We refer to Kung’s book [23] for more details on the properties
of TRBF kernel.

D. Fast Learning Kernel Methods

For finite decomposable kernel function [see (13)], the
kernel matrix is tightly linked to the training inputs in H

K = 	T	 (18)

where 	 = [φ(x1) · · · φ(xN)] is the data matrix in kernel-
induced feature space.

1) Learning Complexity of SVM: The SVM learning
involves a quadratic programming problem with learning com-
plexity at least �(N2). For RBF kernel, which has infinite
dimensional kernel induced feature space, the number of sup-
port vectors usually increases with the number of training
samples N, which tends to further increase its learning cost.

2) Learning Complexity for KRR: The KRR learning
focuses on solving the decision vector a in (9), which involves
inverting a N × N matrix (K + ρC−1) and therefore demands
a high complexity of O(N3).

The quadratic and cubic growth with the number of training
samples N renders SVM and KRR from being computation-
ally affordable in large scale learning problems. In numbers, in
our experiment there are approximately N ≈ 80 000 samples
for the popular word “the” in the dataset, resulting in learn-
ing cost of the order 80 0003 ≈ 1015, which is impractical
and calls for a cost-efficient KRR algorithm. Several methods
were proposed to relieve computation burden [49], [55], [56].
In this paper, we implement a cost-efficient algorithm [27]

whose learning complexity grows linearly with N in the active
authentication problem, as described as below.

3) Fast Algorithm for KRR: Let us rewrite the regularized
weighted squared error empirical risk as

N∑

i=1

c(yi)(h(xi) − yi)
2 + ρ‖u‖2

H = ∥
∥	Tu − y

∥
∥2

C + ρ‖u‖2

(19)

and set its partial derivatives to zero, we may solve the decision
vector in explicit form

u = (
	C	T + ρI

)−1
	Cy. (20)

The fast-KRR algorithm solves decision vector u instead
of a, which incurs three costs: 1) the computation of the J ×J
matrix 	C	T requires O(J2N) operations; 2) the inversion of
(	C	T + ρI) requires O(J3) operations; and 3) The matrix-
vector multiplication requires a negligible O(NJ) operations.
In summary, the learning complexity is O(J3 + J2N), which
is linear with respect to N.

VI. FUSION METHODS

In Chair and Varshney’s work [57], a fusion scheme is
proposed which combines decisions from multiple indepen-
dent classifiers by weighted votes. The weights depend not
only on the classifier, but also on its outcome. The base-
line is that information provided by acceptance or rejection
is not equal and is dependent on the classifier’s false rejection
rate (FRR) and false acceptance rate (FAR). Intuitively speak-
ing, for a classifier with very low FRR but rather moderate
FAR, since false rejection is more unlikely than false accep-
tance, its rejection votes would have larger weights compared
to acceptance votes. On the other hand, for a classifier with
moderate FRR but very low FAR, its acceptance votes should
be more persuasive than rejection votes.

Following their concepts, in this paper there are two weights
accompanying with each word classifier hAw, namely the
acceptance weight β

(acc)
Aw and the rejection weight β

(rej)
Aw . Both

weights are determined by the estimated FAR (denoted as
p̂FAR) and FRR (denoted as p̂FRR) as follows:

β
(acc)
Aw = log

(
1 − p̂FRR

p̂FAR

)
, β

(rej)
Aw = log

(
1 − p̂FAR

p̂FRR

)
. (21)

The authentication process maintains a confidence score
sBA(T) representing how confident the system is to authenti-
cate user B as user A at time stamp T . If user B types a word
which contains trigraph w at time stamp T , the confidence
score is updated as

sBA(T) =
{

sBA(T − 1) + β
(acc)
Aw (accept)

sBA(T − 1) − β
(rej)
Aw (reject).

(22)

There is a Bayesian interpretation of (21) [57]. Let p(pre)
legi ,

p(pre)
hack be the prior probabilities of user B being the legit-

imate user A or impostor, respectively. By Bayes rule, if
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word classifier hAw gives an acceptance vote, the posterior
probabilities p(post)

legi , p(post)
hack are given by

p(post)
legi = p(pre)

legi

(
1 − p̂FRR

)

p(pre)
legi

(
1 − p̂FRR

)+ p(pre)
hack p̂FAR

(23a)

p(post)
hack = p(pre)

hack p̂FAR

p(pre)
legi

(
1 − p̂FRR

)+ p(pre)
hack p̂FAR

. (23b)

The logarithm of the ratio between plegi and phack is therefore
updated as

log

⎛

⎝
p(post)

legi

p(post)
hack

⎞

⎠ = log

⎛

⎝
p(pre)

legi

p(pre)
hack

1 − p̂FRR

p̂FAR

⎞

⎠

= log

⎛

⎝
p(pre)

legi

p(pre)
hack

⎞

⎠+ β
(acc)
Aw .

Similarly, if the word classifier gives a rejection vote, the
posterior probabilities are given by

p(post)
legi = p(pre)

legi p̂FRR

p(pre)
legi p̂FRR + p(pre)

hack

(
1 − p̂FAR

) (24a)

p(post)
hack = p(pre)

hack

(
1 − p̂FAR

)

p(pre)
legi p̂FRR + p(pre)

hack

(
1 − p̂FAR

) . (24b)

Analogously, one has

log

⎛

⎝
p(post)

legi

p(post)
hack

⎞

⎠ = log

⎛

⎝
p(pre)

legi

p(pre)
hack

⎞

⎠− β
(rej)
Aw .

Compare with (22), the confidence score can be mathemati-
cally interpreted as

sBA(T) = log

(
plegi(T)

phack(T)

)
(25)

where plegi(T), phack(T) denotes the system’s belief about the
user being legitimate or imposter at time T .

In this paper, the FAR and FRR performances are estimated
by threefold cross validation with Bayesian average

p̂FRR = #false rejection + 1

#rejection + 2
, p̂FAR = #false acceptance + 1

#acceptance + 2
.

VII. EXPERIMENT

A. Experiment Assembly

To verify the cost-performance tradeoff, we conduct
experiments on free-text keystroke dataset collected by
Chang et al. [46]. The dataset contains keystroke dynamics
collected by Web-based software system from 1977 students
in Iowa State University. The system provided three segments
(Segments I–III) of simulated user environments, including
typing short sentences, writing short essays, and browsing
Web-pages. Each segment takes approximately 30 min to be
completed by a participant. In this paper, we only analyze the
twenty-six lower-case letters plus the space, where we regard
the upper-case letters as their lower-case letter counterparts.

Among all 1977 participants, there were 18 participants
whose data were manually discarded due to one or multiple
of the following reasons.

1) They quit in the middle of the experiment.
2) They repeatedly typed in meaningless words, such as

“fdsafewaqfsdagsa fd df d fsd af dsa fs a f af f f ff f.”
3) They used touch screen instead of keyboard to conduct

the experiment.
Among the remaining 1959 participants, there were 978 par-
ticipants who completed all the three segments I–III, while
the other 981 participants completed only segments I and II.
In the following text, we denote set U as the 978 participants
who completed all the three segments, and set Uc as the other
981 users who only completed segments I and II. Note that
participants in U and Uc are disjoint.

During the training phase, the training dataset consists of
keystroke dynamics collected in segments I and III from all
participants in U, where each participant (also referred to as
legitimate user) has approximately 2100 words collected. Each
legitimate user A ∈ U has his own profile trained by formu-
lating a binary classification problem, where the positive class
consists of keystroke dynamics collected from A himself, and
the negative class consists of keystroke dynamics collected
from a random subset of 100 users in U − A.

During the testing phase, the test dataset consists of
keystroke dynamics collected in segment II from all partic-
ipants in either Uc (also referred to as impostors) or U. There
are approximately 900 words collected from each participant
as test data.

B. Parameter Selection

To select kernel bandwidth σ [see (1)] and regularization
parameter ρ [see (12)] for SVM-RBF, we perform threefold
cross validation on training dataset as to be elaborated as
below: For each legitimate user A ∈ U, we take keystroke
dynamics from user A in training dataset (segments I and III)
as positive class, and keystroke dynamics from a random sub-
set of 50 users in U − A in training dataset as negative class.
The occurrences of false rejection and false acceptance for
authenticating A ∈ U are then evaluated by threefold cross
validation. Tables I and II summarize the evaluated EER and
the area under detection error rate curve (AUC) on train-
ing dataset for σ = 0.1, 0.2, 0.5, 1, 3 and ρ = 0.5, 1, 2, 5
[see (12)]. We choose σ = 0.5, ρ = 2, which minimizes
both EER and AUC evaluated by cross-validation on train-
ing dataset. For KRR-TRBF and KRR-POLY, we choose
σ = 0.5 and select the corresponding ρ which minimizes
the EER evaluated by cross validation on training dataset, as
summarized in Table III. The confidence score threshold at
which the EER in Table III is achieved is also summarized
in Table IV.

C. Performance Metrics

The main performance metrics include the FRR and FAR,
which are measured as follows.

1) FRR: A false rejection is detected whenever a profile of
a legitimate user A ∈ U fails to accept himself as the



WU et al.: COST-EFFECTIVE KRR IMPLEMENTATION FOR KEYSTROKE-BASED ACTIVE AUTHENTICATION SYSTEM 3923

TABLE I
EER OF SVM-RBF EVALUATED BY THREEFOLD CROSS

VALIDATION FROM TRAINING DATASET

TABLE II
AUC OF SVM-RBF EVALUATED BY THREEFOLD CROSS

VALIDATION FROM TRAINING DATASET

TABLE III
EER OF KRR-TRBF AND KRR-POLY EVALUATED BY THREEFOLD

CROSS VALIDATION FROM TRAINING DATASET

TABLE IV
CONFIDENCE SCORE THRESHOLD FOR KRR-TRBF AND KRR-POLY

AT WHICH THE REPORTED EER IN TABLE III IS ACHIEVED

legitimate user. The authentication system (see Fig. 2)
will compare the keystroke dynamics of every word user
A typed in the testing phase (also known as segment II)
with his own profile to see if the final confidence score,
which is a weighted sum of votes from the various tri-
graph classifiers in profile, is beyond the threshold. The
reported FRR is defined as

FRR = 1

|U|
∑

i∈U

1{Profile i rejects user i}.

Here, 1{·} denotes the indicator function.
2) FAR: Each of the 978 profiles for legitimate users in

U is attacked by all the 981 impostors in Uc. For an
imposter B ∈ Uc to claim the identity of user A ∈ U,
the authentication system (see Fig. 2) compares the
keystroke dynamics of every word imposter B typed in
the testing phase with A’s profile to see if the final confi-
dence score is beyond the threshold. A false acceptance
is detected whenever a legitimate user profile accepts

TABLE V
EER AND AUC UNDER DET CURVE COMPARISON

Fig. 3. DET curves for KRR learning model with TRBF kernel of various
degrees.

an impostor as the legitimate user. More precisely, the
reported FAR is defined as

FAR = 1

|U||Uc|
∑

i∈U

∑

j∈Uc

1{Profile i accepts user j}.

The detection error tradeoff (DET) curves in Figs. 3–5 are
plotted by tuning the confidence score threshold in Fig. 2
to tradeoff between FRR and FAR. The EER and AUC, as
well as the confidence score at which EER is obtained, are
summarized in Table V.

1) Error Rates for KRR-TRBF and KRR-POLY With
Various Degrees: Figs. 3 and 4 summarize the DET curves for
KRR learning model with TRBF and POLY kernels of various
degrees. In terms of EERs, we observe that

KRR − TRBF3 < KRR − TRBF2 < KRR − linear

KRR − POLY3 < KRR − POLY2 < KRR − linear.

The EER for both KRR-TRBFp and KRR-POLYp decreases
as their degree p increases. This can be explained by the higher
dimension J of its kernel-induced feature space H = R

J ,
which provides stronger representation power.

2) Comparison Between KRR and SVM-RBF: Fig. 5 shows
the DET curves for KRR learning model with TRBF3 and
Poly3 kernels, namely KRR-TRBF3 and KRR-Poly3, respec-
tively. They are compared to the SVM learning model with
Gaussian RBF kernel as a benchmark. We observe that KRR-
TRBF3, KRR-Poly3, and SVM-RBF have very similar EER.
However, KRR-TRBF3 has signicantly lower FAR concern-
ing the region where FRR is less than 1%. In terms of AUC
(under DET curve), KRR-TRBF3 outperforms both SVM-RBF
and KRR-POLY3.
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Fig. 4. DET curves for KRR learning model with polynomial kernel of
various degrees.

Fig. 5. DET curves for KRR-TRBF3, KRR-Poly3, and SVM-RBF.

D. Scalability Issues

Besides error rates, it is also an important issue on how
the training and prediction computational costs of a learning
model scales with the size of the collected data. The training
time and prediction time reported in Figs. 6–9 are measured
as follows.

1) Training Time: Let t(i)train be the time needed to train
the profile for legitimate user i. We report the averaged
training time defined as

ttrain_avg = 1

|U|
∑

i∈U

t(i)train.

2) Prediction Time: Let t(ij)pred be the prediction time for com-
paring the typing patterns by imposter j to the profile of
legitimate user i. We report the averaged prediction time
defined as

tpred_avg = 1

|U||Uc|
∑

i∈U

∑

j∈Uc

t(ij)pred.

The simulations are conducted on two Intel Xeon X5680 CPU
@3.33 GHz, 8 GB RAM, with 6 cores for each processor,
running the Linux version 2.6.32 with Red Hat 4.4.7-4 version.

Fig. 6. Training time for KRR learning model with TRBF kernel of various
degrees.

Fig. 7. Prediction time for KRR learning model with TRBF kernel of various
degrees.

To see how training time scales up with the training data
size, we conduct experiment to be elaborated as follows: in
the training phase, the profile for a legitimate user A ∈ U is
trained by formulating a binary classification problem. Similar
to the experimental setup in Section VII-A, the positive class is
composed of keystroke dynamics collected from user A in seg-
ments I and III. The negative class, however, is composed of
keystroke dynamics collected from a random subset of L users
in U−A, where L is a tunable integer which is roughly propor-
tional to the training data size. In the following experiments
we take L ∈ {50, 100, 150, 200, 250, 300}.

Since the TRBF_p and Poly_p kernels have exactly the same
kernel-induced Hilbert space dimension J(p), they have almost
identical training and prediction costs, which is also observed
by our experiments. In the following context, we will focus
on the training and prediction costs for TRBF kernels.

1) Training Time for KRR-TRBF With Various Degrees:
Fig. 6 summarizes the training time for KRR learning model
with TRBF kernel of various degrees. We observe that for each
specific curve, the training time grows linearly with L, which
is roughly proportional to the training data size as expected.
Recall Fig. 3, we also observe a consistent tradeoff between
error rate performance and training time: With higher degree p,
the TRBF_p kernel has higher kernel-induced Hilbert space
dimension J(p), which implies stronger representation power
and smaller error rates, at a cost of higher training cost.

2) Prediction Time for KRR-TRBF With Various Degrees:
Fig. 7 summarizes the prediction time for KRR learning model
with TRBF kernel of various degrees. We observe that for
each specific curve, the prediction time is independent of L.
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Fig. 8. Training time for KRR learning model with TRBF3 and Poly3 kernels,
which are compared with SVM learning model with Gaussian-RBF kernel.

Fig. 9. Prediction time for KRR learning model with TRBF3 and Poly3
kernels, which are compared with SVM learning model with Gaussian-RBF
kernel.

In other words, the prediction time is constant over training
data size. Recall Fig. 3, we also observe a consistent tradeoff
between error rate performance and prediction time, where
TRBF kernel with higher degree gives smaller error rates but
requires higher prediction time.

3) Training and Prediction Time Comparison Between KRR
and SVM: Fig. 8 plots the training time for KRR learning
model with TRBF3 and Poly3 kernels. They are compared
to the SVM learning model with Gaussian RBF kernel as
a benchmark. We observe that both KRR-Poly3 and KRR-
TRBF3 have significantly less training cost than SVM-RBF.
Furthermore, the training time for both KRR-TRBF3 and
KRR-Poly3 grow linearly with the training data size N, while
SVM-RBF has training time growing quadratically with N.

Fig. 9 plots the prediction time for KRR-TRBF3, KRR-
Poly3, and SVM-RBF. We observe that both KRR-TRBF3,
KRR-Poly3 have significantly less prediction cost than SVM-
RBF. Furthermore, the prediction time for both KRR-TRBF3
and KRR-Poly3 remains constant regardless of training data
size, while SVM-RBF has prediction time that scales up
linearly with the training data size N.

Recall Fig. 5, both KRR-POLY3 and KRR-TRBF3 achieve
significantly less training and prediction times while retain-
ing comparable error rates as SVM-RBF. This shows great
potential in large-scale authentication system applications.

VIII. CONCLUSION

In real world applications, an authentication system can eas-
ily grow beyond thousands of users, with keystroke dynamics

constantly collected during the users’ daily work. The large
scale dataset raises scalability concerns, which in turn neces-
sitate our development of efficient learning and prediction
algorithms. We apply Kung and Wu’s work [27] to: 1)
approximate the Gaussian-RBF kernel with a TRBF kernel
and 2) then solve the KRR learning model in the intrinsic
space [27]. This results in a fast-KRR learning algorithm
with O(N) training cost, making it very cost effective for
large-scale learning applications. Likewise, in the predic-
tion phase, the RBF kernels again suffer from the curse of
dimensionality problem, causing its prediction time to grow
linearly with the training data size N, or more exactly, with
the number of support vectors. In contrast, the TRBF ker-
nel needs only a constant prediction time regardless of the
training data size, rendering it very appealing for real-time
prediction.

The fast-KRR algorithm (along with TRBF kernels)
offers computational advantages over the traditional SVM
with Gaussian-RBF kernel, while retaining similar error-rate
performances. More precisely, our learning model achieves an
EER of 1.39% with O(N) training time, while SVM with
the RBF kernel shows a rate of 1.41% with O(N2) train-
ing time. This points to potentially promising deployment of
the fast-KRR learning model for real-world large-scale active
authentication systems. Furthermore, the TRBF kernel may be
tuned by the TRBF order which in turn dictates the intrinsic
degree J of the TRBF kernel. Both the theory and experi-
ments shows that, by tuning the intrinsic degree J, one may
strike a compromise between accuracy and training/prediction
complexities.

Besides the class-dependent cost algorithmic approach
implemented in this paper, there are various techniques pro-
posed to ameliorate the class imbalance problem both on
the algorithmic and data levels [58], [59]. At the data level,
different forms of resampling are proposed such as ran-
dom oversampling the minority class with replacement, ran-
dom undersampling the majority class, directed oversampling,
directed undersampling, oversampling with informed genera-
tion of new samples, or a combination of the aforementioned
approaches [60]. At the algorithmic level, solutions include
class-dependent costs to compensate class imbalance [61],
adjusting the decision threshold, adopting recognition-based
(formulate as one-class problem) rather than discrimination-
based (formulate as two class problem) learning. We will
explore various data-centered approaches for class imbalanced
problems in our future work.

In this paper, the flexibility of hyper-parameter selection is
not yet fully explored. For instance, the optimal hyper param-
eter σ for POLY and TRBF kernels may be different, as they
weight higher order terms differently. Also, Table III suggests
that EER may be further reduced by selecting a wider range
of hyper-parameter ρ. These issues will be further addressed
in our future work.

The KRR-TRBF implemented in this paper can be con-
sidered as a regular linear regression in a finite dimensional
space R

J , where the raw attributes are mapped to R
J by some

specific nonlinear transformation. Such idea of representing
the samples by vectors in some finite dimensional space R

J ,



3926 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 11, NOVEMBER 2017

on which the original kernel regression problem is approx-
imated by a regular linear regression problem in R

J , can
be also found in other large-scale KRR approaches such as
Nystrom method [62] and fixed-size LS-SVM [63]. The dif-
ference lies in how the finite dimensional space is formulated.
In Nystrom method the principle component analysis (PCA)
is implicitly applied on the N training samples in the kernel-
induced feature space H, where each sample is represented
by its N principle components; in fixed size LSSVM [63],
instead of performing PCA on all the N training samples,
it selects a subsample of predefined size J � N by max-
imizing the quadratic Renyi entropy, and then apply PCA
on the selected J subsamples to find J principle compo-
nents to represent each sample. In the future work we will
quantitatively compare KRR-TRBF with Nystrom method and
fixed-size LS-SVM, as well as other approaches summarized
in [33] which are scalable for large-scale active authentication
applications.
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