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Abstract—The power-saving opportunities of long-running application servers which execute on multi-core systems are studied in this

paper. The research goal is to develop an efficient power-saving strategy of application servers with the minimum performance

degradation in cloud environments. The power-saving strategy is based on the run-time information which is already available in a

JVM, the base software component of application servers. Several key findings are revealed through this study. First, the particular

behavior of application servers, also known as phases, can be related to the run-time information of a JVM. Thus the phases of an

application server can be predicted before the applications actually execute on hardware. Secondly, some particular phases are

observed in this study and used to establish the power-saving strategy, such as memory phases and execute phases. Finally, a new

finding of idle phase is proposed to reduce significant energy wastage without performance degradations. Based on these findings, a

set of power-saving algorithms is proposed and implemented with two widely used JVMs, Sun’s Hotspot and Jikes RVM. With the

experiments of five multi-threaded benchmarks and two web application benchmarks, the use of proposed power-saving strategy leads

to the lowest value of energy-delay product among the other power-saving techniques, and the performance degradation is well below

6 percent.

Index Terms—Energy efficiency, Java virtual machine, application servers, multi-core systems, multi-threaded applications
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1 INTRODUCTION

IN recent years, web applications have become a popular
choice for service providers and already show their

importance in the global marketplace. For example, a suite
of web applications (e.g., E-mail, Document processing and
File storages) was developed by Google has already influ-
enced the use of the Internet [1]. The software in cloud envi-
ronments that grants web applications to be served via the
Internet is referred to as application servers. Industry mar-
ket watchers expect the revenue of application servers could
reach approximately 67 billion dollars by year 2018 [2].

With the trend of energy saving and carbon reduction,
the energy wastage of long-running application servers is
becoming an important issue. For example, while applica-
tion servers tend to co-locate with data centers, the annual
data center energy consumption in US is estimated to grow
to over 140 billion kWh at a cost of $13 billion by 2020 [3].
Furthermore, the industry trend is toward integrating mul-
tiple cores on a chip [4]. As a result, multi-core processors
are widely deployed on servers. The power consumption of
multiple processor cores stresses the energy wastage issue
of application servers.

In order to reduce power consumption of a long-running
application server, the energy wastage of processors is
highlighted. Since the processors consume the most of

energy in a server platform [5]. The well-known power-
saving technique is called the Dynamic Voltage and Frequency
Scaling (DVFS), which is available in modern processors [6].
Many studies are based on the DVFS technique to adjust the
voltage and frequency of processors to reduce CPU’s power
consumption [7]. These researches can be classified into two
major groups, profiling and the use of performance monitors.

The profiling approach relies on the analyses of appli-
cation behavior first, and then, uses this information to
adjust frequencies of processors [8]. Due to the additional
cost of code analyses and special instruction insertion,
profiling approaches is rarely deployed on a system
which requires quick responses and high performance,
such as application servers.

On the other hand, the performance monitor is a set of
registers in processors, which can be used to obtain hard-
ware events. The observation of phases can be used to
adjusted processors’ frequency to save energy [9]. However,
the use of performance monitors has limitations. First, phases
only can be observed after hard-ware events are appeared in
performancemonitors. It is always one step behind. Secondly,
the periods of a phase cannot be observed precisely. The
actual start/end timing of a given phase is not known.

In order to improve the issues of profiling and the use of
performance monitors, our motivation is to detect the
phases of application servers precisely with the run-time
information of the Java Virtual Machine (JVM), which is the
base software of application servers. The instructions of
Java web applications, also known as the bytecodes, have to
be interpreted by the JVM, and then can be executed on the
hardware. This feature leads a capability to observe the
phase of application servers before the run-time behavior is
actually changed.

The experimental results show that the use of pro-posed
power-saving strategy leads to the significant energy reduc-
tion (14-23 percent) with the use of long-running application
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server benchmarks, which is better than other power-saving
techniques (10-16 percent). It is worth noting that the slight
performance degradation (4 percent) is observed with the
use of proposed strategy, which is also better than other
power-saving techniques (8-12 percent). The experimental
result shows can reach the goal of this study.

In the age of cloud computing, the application servers
play important roles both in cloud and mobile computing.
Such as weather-forecasting, IM service, map service and
social network service, application servers have to perfor-
mance 24 � 7 stably. As an application server that draws
500 W consumes 0.5 kWh actively. There is 4,380 kW was
consumed by this server per year. It is worth noting that
Amazon deployed over 1.5 to 2 million servers globally
based on a conservative estimation in 2015 [51]. Assuming
the proposed power-saving technology saves 15 percent
energy for each server, and then 976,000 MW, which is
equal to 81 Fort Calhoun nuclear power plants in Nebraska,
could be saved per years. On the other hand, the proposed
power-saving technology could be used to develop better
power-performance balance algorithm for devices which is
powered by virtual machines (VMs), such as Dalvik VM of
Android systems.

This paper is organized as follows. First, the run-time
behaviors of JVM’s software components are analyzed with
the use of a single core to validate its phases. Secondly, the
run-time behaviors of JVM’s software components are stud-
ied with the use of multiple cores to detail their interaction.
Thirdly, the particular phases, such as the execution phase,
memory phase and idle phase, are analyzed to observe the
power-saving capability. Finally, based on the study of
JVM’s software components, the power-saving strategy is
proposed and examined.

2 BACKGROUND AND RELATED WORK

This chapter describes the terminology and definitions
which relate to application servers, JVM, garbage collection
and the current power saving technology. It is worth noting
that the term, application servers, is referred to Java-based
application servers in this study.

2.1 The Structure of Application Servers

In order to reach the requirements of security and portabil-
ity, web applications are usually hosted on the application

server with Java techniques. The application server can be
considered as a container of various types of web applica-
tions, such as Servlets, Enterprise JavaBeans (EJB) and Java-
Server Pages (JSP). These web applications use application
servers as an interface to exploit external resources, such as
the hardware, network and databases.

The structure of a Java-based application server is shown
in Fig. 1. The libraries of Java 2 Enterprise Edition (J2EE) pro-
vide the support for web applications. Moreover, the JVM
of Java 2 Stand Edition (J2SE) is used to interpret the byte-
code of web applications to machine codes, and then exece-
cute them on hardware. It is worth noting that an
application server is executed with a JVM instance. In order
to exploit the run-time information which is available in a
JVM to reduce the energy wastage, the JVM behavior is
studied in this research.

2.2 The Structure of Java Virtual Machines

In a JVM, the garbage collector is used to collect inaccessible
objects, which are considered as the garbage. The high
latency of memory access usually leads to CPU waiting for
the results from the memory. The energy is consumed by
the waiting CPU, and system performance is not improved.
Thus the phase of garbage collections might be a power-sav-
ing capability of a JVM. The structure of a JVM is shown in
Fig. 2.

Based on the analysis of JVM’s software components, we
hypothesize that the behavior of the vm_thread and the gar-
bage collector of the JVM could be the power-saving capabil-
ity of application servers. This hypothesis will be verified
with the further behavior analysis of vm_thread and the
garbage collector.

2.3 Related Works

As hardware components are growing into more power-
hungry than ever, the power consumption of the long-run-
ning servers is becoming an interesting topic. Recent studies
[10], [11], [12] have demonstrated that the power consump-
tion could be retrenched by applying the lower power-level
on the particular hardware component. Moreover, due to
the significant energy demands of CPU in server systems,
many studies focused on reducing power consumption of
CPU [5]. Weiser et al. [13], have demonstrated the use of
dynamic voltage scaling (DVS) to reduce energy wastage of
CPU. Further studies [14], [15], [16] explored the perfor-
mance of DVS techniques in the general-purpose and real-
time systems.

Fig. 1. The structure of a Java application server.

Fig. 2. The structure of Java virtual machines.
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It is worth noting that there are more approaches to
reduce the power-saving of a cloud/data center. Such as the
studies of power-saving techniques on data centers and con-
tent delivery networks [51], [52]. These studies show the
distributed databases architecture has highly potential to
reduce power wasting. The use of virtualization technology
also leads to significant power saving [53]. With load-aware
scheduling, the energy management could be more effi-
ciency [54], [55], [56]. However, these approaches required
more coordination between various servers, thus the side
effect evaluation is required.

These studies put emphasis on the methodologies of
phase observations. The information of applications’
phases can be used to adjust the power-level of the objec-
tive system, and then reach the goal of power-saving. The
methodologies of phase observations can be classified
into two major groups, the profiling and the use of perfor-
mance monitors.

There are many power-saving studies which are based
on the profiling methodology. Delaluz et al. [17] and Hsu
et al. [18], [19] use the compiler-directed profiling approach
to reduce power consumption. The phases-transition
instructions of particular power-levels are inserted into
binary codes of applications based on the offline profiling.

However, the additional profiling work leads to the
unavoidable overhead. In addition, the compiler-directed
profiling only works with a single application at a time. In
run-time, other processes might affect the system status,
and reduce the profiling accuracy of the objective applica-
tion. It leads to either less efficiency or great overheads of
profiling approaches in multi-tasking and multi-cores sys-
tems. Instead of the additional work of the profiling, our
approaches use the run-time information which is already
available in virtual machines. Thus the overheads of phase
detections could be limited.

On the other hand, the phase detection by performance
monitors is widely used in industries and researches. The
information of performance monitors can be observed by
the run-time statistics, built-in hardware registers and exter-
nal sensors. The use of run-time statistics [20], [21], [22],
[23], such as the processor usage, is a popular approach to
reduce energy wastage. Some studies use performance
counters, a set built-in registers of CPUs, to detect the phase
and adjust the power-level [24], [25].

In addition, the use of external sensors, such as the ther-
mal probe, to observe the heat generation and adjust the
power-level is also a popular approach [26], [27], [28]. Some
studies use a group of hardware registers, such as the num-
bers of stall cycles and retired instructions, to detect the
phase and adjust the power-level [29], [30], [31]. Moreover,
some studies use the information of hardware registers to
improve task scheduling, and reach the goal of power-
saving [32], [33]. Due to the variations of performance moni-
tors only can be observed after the phase is changed, thus
the possibility of energy wastage and performance degrada-
tions could be remained by this approach. In order to elimi-
nate this possibility, the beforehand phase detection is
proposed in proposed approach. The phases could be
observed precisely by the run-time information which is
already available in a JVM, before they actually change. The
precise information of phases could be used to adjust

appropriate frequencies, and then reduce the most of
energy wastage with performance maintenance.

Compared with the traditional power-saving approaches
which arementioned as above, the power-saving approaches
which are based on the use of virtual machines are rarely
demonstrated. Fries [34] proposes an approach to find an
optimizing placement of a group of VMs on multiple hard-
ware platforms to reduce the energy cost. An online method
is proposed to configure the configuration of VMs and
reduce the number of physical hosts [35]. The dynamically
rescheduling is proposed to collocate processing heteroge-
neousworkloads of VMs [36]. However, the phase detections
of these approaches are based on the use of performance
monitors. Thus these approaches cannot detect phases as
accurately as the use of GVM approaches.

3 THE ANALYSIS OF JVM SOFTWARE

COMPONENTS

In order to reach the goal of power-saving by the run-time
information which is available in a JVM, the experiments
are proposed to analyze the behavior of JVM’s software
components. The experimental steps are shown as follows.
First, the setup of experiments is detailed. Secondly, JVM’s
software components are analyzed with the use of a single
core. Thus the behavior of each JVM’s software component
could be observed separately. Finally, the interactions of
each JVM’s software component are studied with the use of
multiple cores. Thus the interaction between each compo-
nent is detailed. Based on experimental results, the behavior
of JVM’s software components is clarified to develop the
power-saving strategy.

3.1 The Setup of Experiments

All the experiments are based on a server with the Q6600
processor, an Intel quad-core CPU. The frequency of each
core is allowed to be adjusted independently. The four
available frequencies of the Intel Q6600 are 2.4, 2.13, 1.87
and 1.60 GHz. The Fedora Core 14 with kernel version
2.6.35 and Sun’s Java System Application Server 9.1 are
used as the operating system and the application server in
these experiments.

In order to evaluate the performance of various power-
saving approaches, the appropriate technique to measure
the power consumption of processors is important. In gen-
eral software approaches, such as dynamic power measure-
ment of CMOS circuits, the power consumption of a CPU is
expressed as the square value of voltage plus frequency of
each core. However, only dynamic power consumption is
measured by the software approach. Due to the issue of
leak current, the static power consumption is becoming sig-
nificant in modern processors [37]. The lack of static power
measurement might result in the inaccurate evaluation of
CPU power consumption [38].

In order to improve this issue, a new hardware approach
is proposed [39]. Two accurate digital power meters are
used to measure the power consumption of processors by
the current and voltage variation of a special electronic
socket, as known as voltage regulator module (VRM) [40],
which is integrated on the motherboard to provide power
to main processors. The VRM is consisted by several
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converters in parallel and usually has special controls that
respond to signals from the processor, such as voltage identi-
fication code (VID). It is worth noting that the output voltage
of the VRM is varied based on the demand of processors.

3.2 Multi-Threaded Java Benchmarks

In order to approximate the multi-threading feature of web
applications, five widely used multi-threaded Java bench-
marks are examined in this study. They are Eclipse, Hsqldb,
Lusearch and Xalan from the Dacapo benchmark suit [42],
and SPECjbb2005 benchmark. These multi-threaded bench-
marks perform various types of workloads to present the
features of web applications.

Moreover, in order to validate the performance of pro-
posed power-saving approaches with the use of application
servers, two widely used web application benchmarks,
SPECjAppServer2004 and RUBiS, are used in experiments.
SPECjAppServer2004 uses a large and representative sam-
ple of J2EE APIs to evaluate the performance of the individ-
ual system. RUBiS is an on-line auction site modeled after e-
Bay. The experimental results of SPECjAppServer2004 and
RUBiS benchmarks are used to represent the performance
and power consumption of the experimental application
server, Sun’s Java System Application Server 9.1.

3.3 The Behavior Analysis of the Garbage Collector

Due to the highest market share of Hotspot JVM, a state-
of-the-art Hotspot JVM, shipped with OpenJDK 1.7, is
used in the experiments. With the use of Hotspot JVM,
the parallel garbage collection is also referred to as the
throughput collector. It uses a parallel version of the
young generation collector. The old (tenured) generation
is still cleaned with the default collector. On the other
hand, the concurrent garbage collector is also referred to
as the concurrent low pause collector. It collects garbage
in the old (tenured) generation concurrently to executing
the application.

It is worth noting that the use of various heap sizes could
lead to significant effect when the NewRatio technique is
applied. The size of the heap could determine the frequency
of collection and affect the locality of both old and young
objects. For example, the use of bigger heap could reduce
the frequency of collection. On the other hand, the time con-
sumption of each collection will increase due to more
objects have to be collected in the heap.

The configuration of garbage collections is based on
the default settings in the HotSpot JVM, in which the
used garbage collector is a generational garbage collector.
The garbage-collected space is divided into two genera-
tions, the young generation and the tenured generation.
The copying collector is used in the young generation.
The young generation is optimized for those objects with
a short lifetime. After several collections, the survived
objects are moved to the tenured generation since these
objects have a longer lifetime. In the tenured generation,
the mark-sweep-compact collector is used to collect the
garbage concurrently.

In order to verify our hypothesis, the experiments are
proposed to clarify the hypothesis. In this experiment, three
multi-threaded benchmarks are used to examine the time

consumption of two main phases of a garbage collector, the
minor garbage collection (minor-GCs) and the major gar-
bage collection (major-GCs).

In order to detail the behavior of the minor-GC and
major-GC with the use of multi-core processors and differ-
ent CPU frequency, the experiment is proposed to examine
the time consumption of the minor-GC and major-GC. The
less time consumption of GC indicates the performance
improvement by the use of more cores or the higher fre-
quency. Based on the experimental result, the power-saving
capability of garbage collectors can be verified.

The minor-GC time consumption of three multi-threaded
benchmarks, Hsqldb, Xalan and SPECjbb005, is shown in
Figs. 3a, 3b, and 3c. It is observed that time consumption of
the minor-GC is reduced significantly with the use of more
processor cores. This observation shows that the gc_threads
can take the advantage with all available multiple processor
cores in a minor-GC. That also indicates that the gc_threads
do the parallel collection. On the other hand, the slight time
consumption change of the minor-GC is observed when the
use of different CPU frequency. This observation shows
that the processor is waiting for the memory accesses, the
objecting moving from the young generation to the old gen-
eration. Since the speed of the memory accesses is much
lower than the speed of the processor, the processor has to
wait for the memory accesses, and results in the plenty
memory stalls. Based on this observation, it can be assumed
that the minor-GC is highly related to the memory phase
rather than the execution phase. It is worth noting the CPU
frequency can be minimized to reduce the energy wastage
during a memory phases without the significant system per-
formance degradation. Thus a minor-GC can be considered
as a power-saving capability of a JVM.

The time consumption of the major-GC is shown in
Figs. 3d, 3e, and 3f. Instead of the minor-GC, the slight vari-
ation of time consumption is observed when the number of
processor cores is increasing. On the other hand, the signifi-
cant time reduction is observed when the CPU frequency is
increasing. The observations show that the performance of
the major-GC is correlated to the computing power of pro-
cessors. Thus the major-GC is highly related to the execu-
tion phase than the memory phase.

Furthermore, the major-GC cannot take advantage
with the use of multiple cores, which can be observed by
the similar time consumption with the use of various
processor cores. When a major-GC is engaged, a lock is
used to guarantees that no other JVM thread is in the
middle of modifying the Java heap. Therefore, the global
work can be accomplished correctly. Since only one JVM
thread can work in the major-GC, the use of multiple
processor cores cannot reduce the time consumption of
the major-GC.

As a brief summary, the minor-GC takes advantage with
the use of multiple cores, but not the increasing of the CPU
frequency. Thus it can be hypothesized that the configura-
tion of using all available cores and setting them to the mini-
mum CPU frequency might lead to the performance
maintenance and the energy wastage reduction for the
minor-GC. On the other hand, since the major-GC takes
advantage with the high CPU frequency but not multiple
processor cores. It can be hypothesized that the use of a
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single core with the maximum CPU frequency might lead to
high performance and the low power consumption for a
major-GC.

In order to verify the hypotheses, the experiment which
is based on various numbers of processor cores is proposed
in the next section. The behavior of the minor-GC and the
major-GC are analyzed by certain hardware events particu-
larly. Thus the time consumption and the power consump-
tion of the garbage collector, which is the power-saving
capability, can be detailed further.

3.4 The Study of JVM’s Software Components with
the Single Core

In order to verify the hypotheses, this experiment is pro-
posed with the use of a single core in this section to detail
the particular behavior of each JVM’s software component.
With the use of the single core, the JVM works as a single
thread application. Thus each JVM’s software component
executes sequentially. Therefore, the interaction of multi-
threading and multi-cores could be avoided, and then the
particular behavior of each JVM’s software component can
be observed and analyzed.

In order to detail the particular behavior of each JVM’s
software component, the hardware events are monitored to
determine the phases of components. Two important hard-
ware events, Instr_Ret and IFU_Mem_Stall, are monitored
by accessing the performance counter which is built in the
CPU. Instr_Ret counts the number of retired instructions
and IFU_Mem_Stall counts the number of stalled cycles
while a CPU waits for results of memory access.

Moreover, a special measure called stall cycle per instruc-
tion (SCPI) is employed (tracked) to analyze the phases
of the multi-threaded benchmarks. The SCPI is defined as
follows:

SCPI¼Mem Stall

Instr Ret
;

where Mem_Stall and Instr_Ret are both the built into hard-
ware events. Instr_Ret stands for the number of instructions
retired. Mem_Stall represents the number of the stalled
cycles, which reflects the time the CPU needs to wait for the
required input data from memory.

In this experiment, a low value of SCPI is used to indicate
an execution phase, since it implies a high CPU workload.
On the other hand, a high value of SCPI is used to signify a
memory phase, which normally implies the CPU waiting
for memory requests and actually the timing to lower the
CPU frequencies.

There are four figures are used to represent the behavior
of JVM’s software components. The global behavior of a
JVM (including all JVM’s software components) is shown in
Fig. 4. The behavior of the major JVM’s software compo-
nents, which are the vm_thread and gc_thread, are shown
in Figs. 6 and 7. Two measures, the number of instruction
retired and the SCPI value, are used to present the behav-
iors of a JVM and its software components. The time scale
(X-axis) is the same in all figures. Thus the comparison
between JVM’s software components can be reached. Fur-
thermore, the engaged and disengaged timing of the major-

Fig. 3. The time consumption of major/minor GCs with the use of various numbers of processor cores.

CHEN ET AL.: AN ENERGY-EFFICIENT JAVA VIRTUAL MACHINE 267



GC and minor-GC is shown with the same time scale (X-
axis), thus the periods of GC can be observed and compared
with the behavior of JVM’s software components.

Compared with the global behavior of JVM in Fig. 4, it is
observed that the most of Instr_Ret are generated by the
vm_thread and the gc_thread in Figs. 5 and 6. It is worth
noting that a vm_thread and the gc_thread are both highly
related with the garbage collection, the power-saving capa-
bility of a JVM. In order to detail the correlation of software
components and garbage collections, the periods of garbage
collections (including the minor-GC and major-GC) are
shown in Fig. 7.

In a major-GC, the large numbers of Instr_Ret are
observed in a vm_thread in Fig. 7. However, the large
Instr_Ret numbers of a vm_thread only lead a few SCPI
value in a major-GC. This observation shows that the few
memory access stall cycles are generated in a major-GC.
The workload of a vm_thread, to visit all objects and finds
inaccessible objects, leads to this observation. Thus the
period of a major-GC is considered as the execute phase
due to the few memory access stall cycles of the vm_thread

Moreover, the significant peaks of the SCPI value are
observed at the end of each major-GC in Fig. 7. In the
execution round, the SCPI peaks are observed in 8.76,
9.43, 10.05 and 10.32 second. The SCPI peaks are due to
the large number of memory access stall cycles, which are
generated by the garbage collection of the gc_thread. Due
to the observation of the large number of memory access
stall cycles, the end of a major-GC should be considered
as the memory phase.

On the other hand, the significant SCPI values are
observed in each minor-GC. Compared the Instr_Rets

values of the vm_thread and gc_thread in Fig. 7, it could
be observed that the most of Instr_Rets are generated by
the gc_thread. At the same time, the gc_thread also gener-
ates significant memory stall cycles. Therefore, it leads the
significant SCPI value in a minor-GC. This observation
verifies the hypothesis: a minor-GC is highly related to
the memory phase

As a brief summary, the phase of the major-GC is consid-
ered as the execution phase due to the behavior of a
vm_thread. Furthermore, the end of a major-GC, which is
the period for the gc_thread collects garbage, should be con-
sidered as the memory phase. On the other hand, a minor-
GC should be considered as the memory phase due to the
behavior of the gc_thread. It is worth noting that the
engaged and disengaged timing of the major-GC and
minor-GC can be observed with the run-time information
which is already available in a JVM. Thus the accurate
phase determination can be reached to develop the power-
saving strategy of a JVM.

3.5 The Study of JVM’s Software Components with
Multiple Cores

In general, the modern multi-threaded applications can take
advantage by the use of multiple core processors. However,
due to the interaction of the software and hardware, such
as locks, task scheduling, parallelism and cache locality.
A multi-threaded application might not take advantages
fully with all available cores. Moreover, the interaction
might lead the to the energy wastage. For example, the poor
task scheduling might lead to that one processor core waits
for another core, and then results in the energy wastage due
to the idle waiting of the processor core.

Fig. 4. The global behavior of the JVM. Fig. 6. The behavior of the gc_thread.

Fig. 7. The engaged/disengaged timing of the major-GC and minor-GC.Fig. 5. The global behavior of the VM_thread.
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In order to analyze the interaction of software and hard-
ware with the use of multiple cores, two multi-threaded
benchmarks, Hsqldb and Xalan, are examined with the
multi-core processor (four cores) in this experiment. Due to
the finding in Section 3.4, the garbage collection could be
the power-saving capability of a JVM, thus the interaction
of major-GC and minor-GC are detailed further in this
experiment.

The experimental results of two multithreaded bench-
marks are shown as follows. For Hsqldb benchmark, the
number of instruction retired, the SCPI value and engage/
disengage timing of GC are shown in Figs. 8a, 8b, and 8c.
For Xalan benchmark, they are shown in Figs. 8d, 8e, to 8f.
The time scale (X-axis) is the same in these figures. The anal-
ysis of the experimental results is as follows.

First, compared with the number of Instr_Ret and the
engage/disengage timing of the major-GC in Figs. 8a, 8b, to
8c, the significant number of Instr_Ret are observed in only

one core. On the other hand, the very few number of
Instr_Ret is observed with the other cores at the same time.
Furthermore, the same experimental result of major-GC is
observed with the use of Xalan in Figs. 8d, 8e, and 8f. The
reason which leads to this observation is detailed as follows.

The use of locks for the JVM’s global work leads to this
observation in a major-GC. In a major-GC, the vm_thread
uses the lock mechanism to avoid the heap modification by
the other JVM threads. Thus the status of objects in a heap
can be preserved. With the use of the lock, the vm_thread
can visit the stacks of Java_threads and the heap to find the
inaccessible objects. However, the use of a lock might lead
the other cores are idle. That seems the reason which leads
to the specific observation of the major-GC, only one core
works and the other cores are idle

Secondly, the low values of SCPI are observed only with
the core which is doing the major-GC. This observation is
due to the behavior of a vm_thread in a major-GC. With

Fig. 8. The behavior of Hsqldb and Xalan with the use of four cores.
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marking inaccessible objects, the status of objects are
changed, but not be collected. Thus the few memory access
stalls are generated. That shows the core which a vm_thread
executes with is highly related to execution phases. On the
other hand, the extreme high SCPI values could be observed
in the other idle cores. This observation details the behavior of
a major-GC further with the use of multiple cores. In a major-
GC, the core which a vm_thread works with is considered as
the execution phase, and the other cores are related to idle phases.

Finally, in a minor-GC, the high numbers of Instr_Ret
and the high SCPI value are observed in all cores. The high
number of Instr_Ret indicates that the garbage collector
exploit all available cores in a minor-GC. The observation of
high SCPI values verifies that the minor-GC is highly
related to memory phases. Since the high number of
Instr_Ret can be observed in all available cores, the observa-
tion validates that the parallel garbage collector works dur-
ing a minor-GC. All cores work in a minor-GC, and all cores
are related to the memory phase.

These findings of garbage collectors provide the power-
saving capability of a JVM. First, the CPU frequency of the
idle cores in a major-GC should be minimized to reduce
energy wastage since they are idle waiting for the lock. It is
worth noting that the CPU frequency tuning would not
reduce the system performance since the frequency tuning
is only applied on the idle cores. Secondly, the CPU fre-
quency the specific core, which a vm_thread executes with,
should be maximized to maintain the performance of gar-
bage collection in a major-GC. Thirdly, the CPU frequency
should be maximized for all available cores in the garbage
collection, which is observed at the end of a major-GC.
Finally, the frequency of all available cores should be mini-
mized in a minor-GC due to that minor-GC is highly related
to memory phases.

3.6 The Summary of Studies

As a brief summary, the findings of this study are shown
as follows. First, only one core work in the major-GC, and
its phase is the execution phase. Secondly, the other cores
in a major-GC are idle phases. Finally, all cores can work
in a minor-GC and their phases are memory phases. More-
over, the beginning and ending of these phases could
be observed by the run-time information of a JVM before
the phases are actually changed. Based on these findings,
the power-saving algorithms and implementation of the
green virtual machine (GVM) approach are proposed in
the next section.

4 THE POWER-SAVING STRATEGY OF A JVM

Based on the finding above, the power-saving strategy of
a JVM, also known as Green Java virtual machine (GVM),
is proposed in this section. The GVM power-saving
approach is combined with two power-saving algorithms,
major-GC and minor-GC. In addition, the advantages
of GVM power-saving approach are also discussed in
this section.

4.1 The Algorithms of the Power-Saving Strategy

Based the phase analysis of garbage collectors, the GVM
power-saving algorithms are proposed to exploit the run-

time behavior in a JVM. Due the different behavior of the
minor-GC and major-GC, the GVM algorithms are con-
structed by two parts as follows.

First, the power-saving capability of a JVM, the major-
GC, is used to develop the major-GC power-saving algo-
rithm. Based on the experiment result, a major-GC can
be considered as a combination of the execution phase,
the idle phase and the memory phase. The execution
phase is observed in the core which a vm_thread exe-
cutes with, and the idle phases are observed in the other
cores. Furthermore, in the end of a major-GC, all avail-
able cores are becoming the memory phase since the
garbage is collected.

The CPU frequency of the specific core, which the
vm_thread executes with, should be maximized to main-
tain performance of a major-GC. The CPU frequency of
idle cores should be minimized to reduce energy wastage
without performance degradation. In the end of a major-
GC, the CPU frequency of all available cores should be
minimized since the memory phase. Based on the find-
ings, the major-GC power-saving algorithm is proposed
in Algorithm 1.

Algorithm 1. The Power-Saving Algorithm for Major-GC

The Major-GC Power-Saving Algorithm:
for each Major-GC event Ema, issued by the JVM process
if Ema ¼Major-GC_START then
for the core which vm_thread executes CPU Cv
Cn := maximum frequency;

for the other cores CPU Ci
Ci := minimum frequency;

else if Ema ¼ GC_START then
for each available CPU Ca

Ca := minimum frequency;
else if Ema ¼Major-GC_FINISH then
for each available CPU Ca
Ca := maximum frequency;

end if

In the major-GC power-saving algorithm, the engage/
disengage timing of a major-GC can be observed by the
run-time information of a JVM. Moreover, the specific
core (Cv), which the vm_thread executes with, also can be
observed by the run-time information of a JVM. In the
period of a major-GC, the CPU frequency of Cv is maxi-
mized to maintain the performance. On the other hand,
the CPU frequencies of the idle cores (Ci) are minimized
to reduce the energy wastage of processors. When the
vm_thread finish the finding of the inaccessible objects,
the CPU frequency of all available cores (Ca) should be
minimized since the garbage collection is the memory
phases. After a major-GC, all cores work for application
normally, thus the CPU frequencies of Ca should be maxi-
mized to maintain system performance. It is worth noting
that the CPU frequency tuning would not reduce the sys-
tem performance since the tuning only applies on idle
cores (Ci).

Another power-saving capability of a JVM, the minor-
GC, is used to develop the minor-GC power-saving algo-
rithm. Based on the study above, a minor-GC is considered
as a memory phase for all available cores. Based on this
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finding, the minor-GC power-saving algorithm is proposed
in Algorithm 2.

Algorithm 2. The Power-Saving Algorithm forMinor-GC

The Minor-GC Power-Saving Algorithm:
for each Major-GC event Emi, issued by the JVM process
if Emi ¼Major-GC_START then
for each available CPU Ca

Ca := minimum frequency;
else if Emi ¼Minor_GC_FINISH then
for each available CPU Ca

Ca := maximum frequency;
end if

In the minor-GC power-saving algorithm, the engage/
disengage timing of a minor-GC can be observed by the
run-time information of a JVM. Due to the minor-GC is
highly related to memory phases, the CPU frequency of
all available cores should be minimized to wait the mem-
ory access. Thus the energy wastage can be reduced in a
minor-GC.

Based on the observation in Figs. 8e and 8f, the major-GC
and minor-GC would not be activated at the same time.
That means the period of the major-GC and minor-GC are
not overlapped. Therefore, the major-GC and minor-GC
power-saving algorithms can be integrated as the GVM
power-saving algorithm in Algorithm 3.

Algorithm 3. The Power-Saving Algorithm

The GVM Power-Saving Algorithm:
for each Major-GC event Ema, issued by the JVM process
if Ema ¼Major-GC_START then
for the core which vm_thread executes CPU Cn
Cv := maximum frequency;

for the other cores CPU Ci
Ci := minimum frequency;

else if Ema ¼ GC_START then
for each available CPU Ca
Ca := minimum frequency;

else if Ema ¼Major-GC_FINISH then
for each available CPU Ca
Ca := maximum frequency;

end if
for each Minor-GC event Emi, issued by the JVM process
if Emi ¼Minor-GC_START then

for each available CPU Ca
Ca := minimum frequency;

else if Emi ¼Minor-GC_FINISH then
for each available CPU Ca
Ca := maximum frequency;

end if

The GVM power-saving algorithm can be considered as
the integration of Algorithms 1 and 2. The GVM power-sav-
ing algorithm can take advantages from the minor-GC and
major-GC. All GVM power-saving algorithms, including
major-GC, minor-GC and GVM, are implemented with two
widely used JVMs, Sun’s Hotspot and Jikes RVM. Instead of
Sun’s Hotspot, which is the widely deployed commercial
JVM, Jikes RVM can be considered as an academic JVM for
research. Based on the experimental results with these two

JVMs, the power-efficiency of proposed GVM approach can
be proved.

The implementation of the GVM power-saving approach
is illustrated in Fig. 9. This, technically, involves (1) instru-
menting the JVM of the Application servers for detecting
the idel, execute and memory phases, and (2) the procedure
of adjustment the CPU frequencies of the device/server.

The former corresponds to the timing informing mod-
ule, which is added for observing and gathering the
required GC information, e.g. the timing information
about the start and the end of a major-GC or minor-GC
phase. The latter is realized by the frequency adjustment
module, which is embedded in the kernel for efficiently
adjusting the CPU frequencies (as requested). All the
requests are from the timing informing module. It is also
worth noting that the frequency adjustment module
includes in-line assembly codes that can directly adjust
CPU frequencies by accessing some particular registers of
the CPU. Thus, compared with the method based on user-
level calls, the way we adjust CPU frequencies is more effi-
cient; the required CPU cycles for the frequency adjust-
ment are minimized.

4.2 The Advantages of Proposed GVM
Power-Saving Strategy

In order to detail the advantages of the GVM power-saving
approach, the further analysis are proposed. The advan-
tages of GVM approach, which include slight overheads of
phases detections, precise phases timing, accurate phase
determinations and performance maintenance, are analyzed
in this section.

First, phases detecting plays an important role in the
most of power-saving approaches. Based on the results of
phase detections, the appropriate CPU frequencies could be
applied to reduce energy wastage. However, the phase
detections usually lead to the overheads, and reduce the
system performance. For example, the requirement of addi-
tional profiling work could be considered as the overhead
in profiling approaches. Moreover, the performance moni-
tor accesses also lead to overheads of power-saving
approaches by performance monitors.

It is worth noting that the phase detections of GVM
power-saving approaches are based on the run-time infor-
mation which is already available in a JVM. Such as the
engage/disengage timing of the major-GC and minor-GC.
Moreover, the particular phases of the major-GC and

Fig. 9. The implementation of proposed strategy.
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minor-GC are constant and already observed. Thus the
phase detections would not lead to the overhead in the
GVM power-saving approach.

Secondly, the inaccurate timing of phases is a disadvan-
tage of power-saving approaches with the use of perfor-
mance monitors. The particular phase is identified only
after the actual behavior already appeared in the perfor-
mance monitors. It is always one step behind. The inaccu-
rate phases timing could lead to unnecessary performance
degradations and the energy wastage.

On the other hand, the period of garbage collection can
be marked by the engage/disengage time of the garbage
collector precisely. The timing can be used to determine the
phase of the JVM. Moreover, Due to the middle-ware fea-
tures of a JVM, the phases can be observed before they are
arisen on hardware actually. Thus accurate phase timing
can be reached by the GVM power-saving approach.

Thirdly, in the profiling power-saving approach, the
observed phases could be affected by the other tasks in the
run-time. It leads to that the observed phase is not identical
to the profiled phase. The inaccurate information of phases
might lead to inappropriate frequency tuning, and then
results in the unnecessary performance degradations and
energy wastage.

On the other hand, the accurate phase determination can
be reached by the GVM power-saving approach. Since
GVM power-saving algorithms focus on the phase of the
garbage collector, which is related to a JVM itself instead of
the application. The phases of garbage collectors are stable
even with the use of different application. Therefore, the
phase determination of GVM would not be affected by
applications. The unnecessary performance degradation
and energy wastage can be avoided.

Finally, the advantages of GVM power-saving approach
improve the problem of the other power-saving approaches,
performance degradations. Due to the unavoidable overheads
of phase detections, inaccurate phases timing and inaccurate
phase determinations, the system performance usually is
degraded. However, the major-GC power-saving algorithm
proposes the power-saving solution with the well perfor-
mance maintenance. Thus the major-GC algorithm could be
the power-saving solution for a web application server which
highly requires performances and the quick response.

5 THE EXPERIMENTAL RESULTS

In this section, the performance of the GVM power-saving
approach is examined and compared with the other power-
saving techniques. Five widely used Java multi-threaded
benchmarks are used to evaluate the performance of power-
saving techniques with the use of Sun’s Hotspot. Further-
more, two multi-tier web application benchmarks, SPEC-
jAppServer2004 and RUBiS, are used to validate the GVM’s
performance with two JVMs, Sun’s Hotspot and Jikes RVM.
Based on these experiments results, the GVM’s performance
could be examined and clarified.

It is worth noting that the power consumption cannot
exactly indicate the power-efficiency, because the lower fre-
quency settings (of CPUs) might significantly decrease the
system performance. Hence, another measure called
energy-delay product (EDP) is used here to evaluate the

power-efficiency. The EDP value is defined as the product
of the power consumption and the execution time squared.
Since this measure considers both energy and delay simul-
taneously, the EDP value can better reflect the power-
efficiency. In general, a lower EDP value indicates a better
power-efficiency.

5.1 The Comparing of Power-Saving Techniques

In order to compare the performance of GVM power-saving
approach with the other power-saving techniques, six
power configurations are proposed to examine the perfor-
mance and power consumptions of power-saving technolo-
gies. The experimental power configurations are illustrated
as follows.

First, two static CPU frequencies, the maximum and min-
imum frequencies, are used as the control group in experi-
ments. The two static configurations are mapped to the
performance and power-saving governors in Linux. In gen-
eral, the use of maximum frequency leads to the best perfor-
mance and the use of minimum frequency leads to the
worst performance. Moreover, the use of minimum fre-
quency usually leads to the significant power consumption
due to the long executing time.

Secondly, two power-saving algorithms of the GVM,
the major-GC power-saving algorithm (Algorithm 1) and
minor-GC power-saving algorithm (Algorithm 2), are
used to examine their performance. Furthermore, the
other two configurations, respectively, refer to the Linux
power-saving governors, ondemand and conservative. These
two power-saving governors would adjust frequencies
based on observing the CPU workload. The use of onde-
mand governors normally switches to the highest fre-
quency immediately when the CPU load is high. It can
thus maintain the system performance well, while it leads
to more energy wastage. On the other hand, the use of
conservative governors increases frequency step by step.
Thus, slight performance degradation and less energy
wastage would be observed. These two Linux power-sav-
ing governors are popular and actually could be used to
represent the performance monitor-based power-saving
approaches.

All available cores (four cores) are used in these experi-
ments, and the CPU frequency of each core can be adjusted
independently. The experimental result of system perfor-
mance, power consumptions and EDP are shown in
Figs. 10, 11, 12. The results of maximum CPU frequency
have normalized to 1.0, then, for each power configuration,
the results are normalized to the results of maximum
frequency.

First, it is observed that only the use of the major-GC
power-saving algorithm maintains the similar performance
as the use of the maximum frequency in Fig. 11, only 2 per-
cent degradation. Comparing with the 10-16 percent perfor-
mance degradation of the conservative and ondemand
approaches, the major-GC power-saving algorithm can
maintain system performance better.

In addition, with the use of the major-GC power-saving
algorithm, the significant energy reduction (15-29 percent)
is observed in Fig. 12. The reduction of power consumption
of the major-GC algorithm is higher than the reduction of
the conservative and ondemand approaches (10-16 percent).
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Moreover, in Fig. 13, the use of the major-GC algorithm
leads to the lowest EDP value in the most of benchmarks
(Lusearch is the exception). These observations show that
the major-GC power-saving algorithm can reduce energy
wastage significantly without performance degradations,
and leads to the lowest value of EDP.

Secondly, it is observed that the acceptable performance
reduction (3-6 percent averagely) is observed with the use
of the minor-GC power-saving algorithm in Fig. 11. In
addition, the fair energy reduction (15-20 percent) with the
use of the minor-GC algorithms could be observed in Fig. 11.
Moreover, in Fig. 12, the EDP values of the minor-GC algo-
rithm are only higher than the EDP values of the use of
major-GC algorithm, and lower than the conservative and
ondemand approaches. These observations show that the use
of the minor-GC algorithm leads to the better performance
than the use of conservative and ondemand approaches.

Compared with the major-GC algorithm, it seems that the
fewer contributions are made by the minor-GC algorithm.
However, in some special cases, the minor-GC algorithm
shows its importance and cannot be replaced. For example, it
is worth noting that the use of the major-GC algorithm can-
not reduce the power consumption of Lusearch benchmark
in Fig. 11. Due to the less memory space requirement of
Lusearch, there is no any major-GC is generated in the run-
time. Thus the use of the major-GC algorithm cannot reduce
any energywastage in this special case.

On the other hand, the use of the minor-GC algorithm
leads to 23 percent of the energy reduction with 6 percent
of performance degradations in Lusearch. This observation
shows that a comprehensive power-saving solution for
application servers should be integrated by the major-GC
and minor-GC algorithms. The integrated power-saving
approach, the GVM power-saving algorithm (Algorithm 3)
should be the comprehensive solution for application servers.

Finally, the summary of these experiments is shown as
follows. The use of the major-GC power-saving algorithm
reduces the significant power consumption without any
performance degradation. Moreover, the use of the major-
GC algorithm also leads to the lowest EDP values among
the other power-saving techniques. However, in some spe-
cial case, the use of the major-GC algorithm might not
reduce any energy wastage. Thus the comprehensive
power-saving solution should be integrated by the major-
GC and minor-GC algorithms. The integrated GVM power-
saving algorithm would be examined with the use of web
application benchmarks in the next section.

5.2 The Validation with the Use of the Web
Application Benchmarks

In order to verify that the use of the integrated GVM power-
saving algorithm can reach the goal of this study, power-
saving and performance maintenance of application servers.
Two widely used web application benchmarks, SPECjApp-
Server2004 and RUBiS, and two widely used JVMs, Host-
spot and Jikes RVM, are used to evaluate the performance
of the GVM power-saving approach. In this experiment, the
performance of major-GC algorithm (Algorithm 1) and the
GVM power-saving algorithm (Algorithm 3) are examined
in this experiment. The experimental results of performance,
power consumption and EDP are shown in Figs. 14 and 15.

In this experiment, the significant advantage of the GVM
power-saving algorithm is observed in a long-running envi-
ronment. With the use of the GVM algorithms, 14-23 percent
energy reductions among two benchmarks could be
observed in Fig. 14. In addition, the performance degrada-
tion of GVM algorithms is less than 4 percent in Fig. 13.
Compared with the 10-16 percent energy reductions and
the 8-12 percent performance degradation of conservative
and ondemand power-saving approaches, the better perfor-

Fig. 10. The system performance of various power-saving techniques. Fig. 12. The EDP of various power-saving techniques.

Fig. 11. The power consumption of various power-saving techniques. Fig. 13. The system performance of web application benchmarks.
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mance with the use of GVM power-saving algorithm is veri-
fied. Moreover, the use of GVM power-saving algorithm
leads to the lowest value of EDP in Fig. 15. Based on the
experimental results, the GVM algorithms can be an
effective and comprehensive power-saving solution for a
long running web applications server.

On the other hand, the major-GC algorithm is examined
for the performance maintenance. In Fig. 14, only 2 percent
performance degradation is observed with the use of the
major-GC algorithm less than the use of the maximum fre-
quency. Compared with the reduction of power consump-
tion with the use of GVM algorithm (14-23 percent), the
reduction of power consumption of the major-GC algorithm
is less (15-29 percent). However, the use of the major-GC
algorithm still leads to the second low value of EDP in
Fig. 15. The observations show that the performance of the
major-GC algorithm is better than conservative and onde-
mand approaches. Moreover, due to the well performance
maintenance, the major-GC algorithm can be an effective
power-saving solution for some web applications which
require short respond intervals.

Based on the experiment result, the better performance of
the GVM algorithm is validated than the other power-
saving techniques. The use of run-time information, which
is already available in a JVM, leads to slight overheads and
accurate phase detections, and results in significant energy
reductions and slight performance degradations. Moreover,
the performance could be maintained well by the use of the
major-GC algorithm, and noticeable energy reductions can
be observed still. Thus the GVM power-saving algorithm
can be a comprehensive power-saving solution of a long-
running application server, and the major-GC power-saving
algorithm can be another choice when the system perfor-
mance must to be maintained well.

6 CONCLUSION

In this paper, the GVM power-saving approaches are imple-
mented and validated. The GVM power-saving approaches
use the run-time information which is already available in a
JVM to detect phases, and then adjust power-levels to
reduce energy wastages without introducing serious perfor-
mance degradation. The GVM implementations of Sun’s
Hotspot and Jikes RVM are used to evaluate the perfor-
mance with five multithreaded benchmarks, SPECjApp-
Server2004 and RUBiS. The experimental results show that
GVM approaches could reach our goal and lead the lowest
EDPs among other power-saving techniques.

With the use of full-GC algorithms, the experimental
results shows that energy wastages reduce in the range of
18-24 percent without performance degradations. On the
other hand, with GVM algorithms, the significant power
consumption reductions (25-34 percent) could be observed
with only 6 percent performance degradations. It is worth
noting that performance of GVM is much better than the
other power-saving techniques. These experimental results
show that GVM power-saving approaches could be the
appropriate techniques on long-running application servers.

To the best of our knowledge, GVM approaches present
one of the first working implementation based on the run-
time information which is already available in a JVM. In the
validations with the other power-saving techniques, GVM
approaches reach the lowest EDP value andwell performance
maintenance. Based on the experiment results, the proposed
GVM approach does achieve the goal in this paper, power-
saving and performancemaintenance at the same time.
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