
Design and Analysis of
High Performance Crypt-NoSQL

Ming-Hung Shih and J. Morris Chang

Abstract—NoSQL databases have become popular with enter-
prises due to their scalable and flexible storage management of
big data. Nevertheless, their popularity also brings up security
concerns. Most NoSQL databases lacked secure data encryption,
relying on developers to implement cryptographic methods at
application level or middleware layer as a wrapper around the
database. While this approach protects the integrity of data, it
increases the difficulty of executing queries. We were motivated to
design a system that not only provides NoSQL databases with the
necessary data security, but also supports the execution of query
over encrypted data. Furthermore, how to exploit the distributed
fashion of NoSQL databases to deliver high performance and
scalability with massive client accesses is another important
challenge. In this research, we introduce Crypt-NoSQL, the first
prototype to support execution of query over encrypted data on
NoSQL databases with high performance. Three different models
of Crypt-NoSQL were proposed and performance was evaluated
with Yahoo! Cloud Service Benchmark (YCSB) considering an
enormous number of clients. Our experimental results show that
Crypt-NoSQL can process queries over encrypted data with high
performance and scalability. A guidance of establishing service
level agreement (SLA) for Crypt-NoSQL as a cloud service is
also proposed.

Index Terms—Big Data, NoSQL, Cassandra, Security, Perfor-
mance, Cloud Service.

I. INTRODUCTION

As the amount of data increases dramatically, new technol-
ogy to efficiently store big data is in urgent need. Traditional
databases like Oracle and MySQL are becoming inadequate
to fulfill the need of big data analytics and storage because of
their relational and well-structured models. For example, big
data analytics could involve data collected from many different
resources such as social media or log files on machines. These
data are not well-structured and moreover, the structure may
change from time to time [1]. Relational database management
systems (RDBMs) have limited supports of unstructured data
or schema changes. As a result, NoSQL database systems have
been developed to resolve the limitations of RDBMs over the
past few years. While NoSQL databases have become popular
among enterprises, their poor security measures keep most
database developers at bay. In this paper, we introduce the
security concerns about data encryption on NoSQL databases,
and we propose a solution to not only enforce the data security,
but leverage the high performance and scalability of NoSQL.

NoSQL, known as Not-Only SQL, stands for non-relational
database management systems. Comparing to RDBMs,
NoSQL databases provide more support to semi-structured
or unstructured data, including the capability of changing

database schema if needed. Furthermore, because of the dis-
tributed and clustered structure, NoSQL databases can deliver
high performance, high data availability, and high scalability
to their clients. These are all very important advantages over
traditional databases for big data analytics.

Different types of NoSQL databases have been developed
based on different demands. Generally speaking, NoSQL
databases on the current market can be categorized into the
following four types [2]: (1) Key-value: Riak, Redis, Windows
Azure Storage. (2) Column-family: HBase, Cassandra, Google
BigTable. (3) Document-oriented: MongoDB, CouchDB. (4)
Graph: Neo4J. Each type of those NoSQL databases aims
at providing a solution to different challenges in big data
analytics. Based on a popularity survey from DB-Engine
ranking [3] by March 2016, Redis, Cassandra, and MongoDB
are the top-3 NoSQL databases that most developers would
choose.

Despite the tradeoffs from CAP theorem [4], security is a
more important issue people concerned about when migrating
from relational databases to NoSQL databases. As addressed
by the Cloud Security Alliance (CSA) in 2013 [5], most
NoSQL data stores suffer from weak authentication and no
protection of data integrity. Data encryption is the most
common method to protect data integrity, and it is usually
implemented at application level or middleware layer by
database users. As a result, NoSQL databases cannot directly
perform any requested queries over encrypted data in storage.
A typical way to retrieve encrypted records is to give every
record an index in plaintext so that NoSQL databases would
be able to retrieve requested records based on given indices.
Nevertheless, it limits the execution of most queries supported
by the original NoSQL databases. In order to overcome this
difficulty, we were motivated to study the possibility of directly
executing queries over encrypted data.

CryptDB [6] is a well-known system developed by Popa
et al. at MIT that utilized a proxy server to translate and
rephrase the clients query before it goes into database, making
this query executable over encrypted contents. They apply
several encryption schemes that are called SQL-aware to data,
which means the execution of some specific queries over
the encrypted contents will become possible by using their
encryption schemes. More details of those encryption schemes
will be discussed in Section III.

When CryptDB was developed, they only considered re-
lational databases. However, NoSQL databases have been
getting more and more attentions from researchers in the last
few years. A study on how to design and implement a system978-1-5090-5569-2/17/$31.00 c©2017 IEEE

for NoSQL databases that provides the same functionality as
CryptDB, which is the ability to query over encrypted data, is
proposed. In addition, system performance is also one of the
concerns in the era of big data research since a database may
be accessed by a huge amount of clients at the same time.
Therefore, testing of many clients’ requests with performance
measurements is also considered in this study.

Our research aims to accomplish (1) provide the full func-
tionality of query over encrypted data on NoSQL databases,
and (2) analyze the performance of our system models, with
a design of cryptographic system specifically for NoSQL
databases, Crypt-NoSQL, that supports query over encrypted
contents with high performance. In this research, we imple-
mented the ideas of Crypt-NoSQL system on a Cassandra
database, along with a testing environment to evaluate the sys-
tem performance by using Yahoo Cloud Service Benchmark
(YCSB) [7]. We also considered Crypt-NoSQL as a potential
cloud service, and provided a guidance to establish the service
level agreement (SLA) based on experimental results.

This paper is organized as follows. In Section II, we enumer-
ate previous research related to the security and performance
of NoSQL databases. In Section III, we introduce the crypto-
graphic part of the proposed Crypt-NoSQL system. In Section
IV, we design different system models for the proposed system
and evaluate their performance. We represent the experimental
results in Section V. Section VI will summarize our work
along with future works.

II. RELATED WORK

Database security has been a very important issue for
decades. Previous work in this area mainly focused on re-
lational databases. However, as more and more data being
collected everyday, relational databases become adequate as
a data storage. NoSQL databases were developed to conquer
certain challenges in big data, but they also brought more chal-
lenges to database security. Cloud Security Alliance (CSA), a
non-profit organization that studies on cloud computing and
its security issues, highlighted top-ten issues in their research
report in 2013 [5]. These ten issues included the study of
securing non-relational data stores. Based on their research,
security was not a major concern when most NoSQL databases
were designed. Weak or even zero security protection was
provided by these data stores. Okman et al. [8] also pointed out
several security issues of NoSQL databases in their research.
They mainly focused on two most popular NoSQL databases,
MongoDB and Cassandra, and analyze their security problems
for the perspectives of data-at-rest protection, user authenti-
cation, user authorization, auditing, etc. They concluded that
these two NoSQL databases lack of data encryption support
and their authentication schemes are weak.

Besides security issues, many researchers are also interested
in the overall performance of different NoSQL data stores.
Cooper et al. [7] from Yahoo! have developed a standardized
benchmark scheme, YCSB, in order to evaluate performance
of each NoSQL database. Their benchmark generates a work-
load with operations (read, update, insert, and delete) and

perform them on a specified NoSQL database to test its
performance. The performance evaluation includes overall
throughput, read latency, and write latency. Klein et al. [9]
studied on the performance of Riak, Cassandra, and Mon-
goDB respectively, with their custom electronic health records
(EHRs) by using YCSB. Their study shows that Cassandra
database offers the highest throughput yet also the highest
latency among the three databases. Waage and Wiese [10] used
YCSB as a benchmark to test the performance overhead of
data encryption on Cassandra and HBase. Their result shows
that enabling encryption will slow down about 10% - 40%
of system throughput. This could be considered as a trade-off
between system performance and data security.

III. QUERY OVER ENCRYPTED DATA

As described in Section I, the first objective of Crypt-
NoSQL is to provide the functionality of query over encrypted
data on NoSQL databases. In this research, Cassandra is
selected as the targeted NoSQL database. Since CryptDB was
designed for SQL databases, if we want to adapt CryptDB
into Cassandra, we must redesign some major components
so the system could fully support Cassandra query language
(CQL) over encrypted data. In this section, we review the
major concepts of cryptography in CryptDB, and introduce
how to design the functionality of the proposed system.

A. Cryptography in CryptDB

CryptDB applies several SQL-aware encryption schemes to
data so that the execution of some specific queries over these
encrypted data would be possible. There are several types
of SQL-aware encryption introduced by CryptDB: Random
(RND), Deterministic (DET), Order-Preserving Encryption
(OPE), Homomorphic (HOM), Join (JOIN/OPE-JOIN), and
Word Search (SEARCH).

RND stands for an encryption scheme that the same plain-
text will result in random ciphertexts every time. This is
the strongest protection to the data and we could achieve
this objective by applying Advanced Encryption Standard
(AES) with a random initialization vector (IV). The random
ciphertext here is considered computationally secure and it
also prevents the data from plaintext attacks. However, data
encrypted with RND will not allow any query to be performed.
DET is a scheme that the same plaintext will produce the same
ciphertext every time when the encryption is performed, which
means each encrypted value is corresponding to a specific data
value. This could be achieved by using AES with zero or a
fixed IV, which can be considered the same as AES electronic
codebook mode (ECB). DET is less secure than RND since
it provides the information of plaintext-ciphertext pair, yet it
also grants us the ability to perform queries with equality
check. OPE is another scheme that reveals the order relations
between data, therefore its less secure than DET yet it provides
the functionality of queries that require the order of data.
HOM scheme supports the queries that contain calculation of
data records. JOIN and SEARCH schemes support the join
operations and like operations in SQL.

TABLE I
COMPARISON BETWEEN SQL AND CQL.

SQL Operations Corresponding CQL

JOIN Not supported.

GROUP BY WITH CLUSTERING ORDER BY

SELECT * FROM table
WHERE id=’1’;

Same, when id is a partition key.

SELECT * FROM table
WHERE field=’f1’;

Not recommended. Secondary index is re-
quired.

INSERT INTO table(id,
field) VALUES (’1’,’f1’);

Same, except the usage of ”IF EXISTS” is
suggested.

UPDATE table SET field
=’f1’ WHERE id=’1’;

Same, when the partition key was given.

DELETE FROM table
WHERE id=’1’;

Same, when the partition key was given.

TABLE II
SUPPORTED OPERATIONS IN OUR SYSTEM.

READ SELECT * FROM table WHERE id=’1’;
UPDATE UPDATE table SET field=’f1’ WHERE id=’1’;
INSERT INSERT INTO table(id, field) VALUES (’1’,’f1’);
DELETE DELETE FROM table WHERE id=’1’;

TABLE III
SUPPORTED OPERATIONS AFTER ENCRYPTION.

READ SELECT * FROM table WHERE id=DET(’1’);
UPDATE UPDATE table SET field=RND(’f1’) WHERE id=DET(’1’);
INSERT INSERT INTO table (id, field) VALUES (DET(’1’) ,

RND(’f1’));
DELETE DELETE FROM table WHERE id=DET(’1’);

Fig. 1. System structure of our Crypt-NoSQL.

B. Cryptography in Crypt-NoSQL

We chose Cassandra as the NoSQL database in our Crypt-
NoSQL. Therefore, we have to study on the difference between
CQL and the traditional SQL before we design this system.
We conclude the comparison as shown in Table I. CQL and
SQL have similar operations except JOIN operations are not
supported in CQL at all. SELECT operations in CQL are also
slightly different from SQL: in SQL, searching values in any
column is always supported. However, Cassandra does not
recommend the search of column values because this requires
the usage of secondary index and it reduces Cassandra’s
overall performance under certain cases [11]. Cassandra relies
on the partition key to indicate the locations of each data
record, since each data record may have multiple replicas
stored in different Cassandra nodes depending on the setting

of replication factor. Therefore, it’s important that each query
in Cassandra must specify the partition key.

Based on our study, most queries supported in CQL
only require RND, DET, and OPE encryption schemes from
CryptDB. In this research, we implemented RND and DET
in our system so that it can support related queries that
involve equality checks. We leave OPE-related queries as a
potential future work in our continuous research. With the
implementation of RND and DET, our system will allow
four major operations to be executed over encrypted contents:
READ, UPDATE, INSERT, and DELETE. An example query
format for each operation is shown in Table II, assuming we
have created a table table(id, field) in Cassandra database,
where id is the partition key to this record, and field stores
the data value of this record.

When writing a record into Cassandra (UPDATE or IN-
SERT), we encrypt the id with DET and the value of field
with RND. DET encryption allows id to be searched by future
queries, and since searching the value of field is not recom-
mended in Cassandra, we apply RND to the data values for the
best security. When reading a record from Cassandra, a READ
operation will first encrypt the id given by user’s query, and use
it to search the corresponding records in the database. After the
encrypted record has been retrieved, an RND decryption to the
data values must be applied. Each supported operation after
applying RND and DET schemes is shown in Table III. These
encryption schemes could be applied to data with a proxy-
based structure similar to CryptDB. Therefore, we propose the
structure of our Crypt-NoSQL system in Figure 1. In Section
IV, we introduce different approaches of our Crypt-NoSQL
and evaluate the system performance.

IV. PROPOSED SYSTEM STRUCTURE

The second objective is to analyze the performance of our
proposed system. Unlike SQL databases that usually consist
of only one centralized server machine, NoSQL databases can
have a cluster that contains multiple machines. We leverage
this property and proposed three different models (EncM1,
EncM2, and EncM3) considering the distributed fashion of
Cassandra database as shown in Figure 2. We evaluate the
system performance of each model with a series of experi-
ments in Section V.

A. NoEnc

NoEnc stands for ”no encryption”, as we want to see
how much the performance overhead will be added when
those query encryption schemes are applied. NoEnc involves
one client machine that connects to one of the nodes in
a Cassandra database cluster, where this node is called a
”coordinator” in Cassandra as it coordinates client’s requests.
The client machine is installed with YCSB to generate multiple
client threads to simulate the situation when many clients are
accessing the service at the same time. Figure 2(a) illustrates
the structure of NoEnc.

(a) NoEnc

(b) EncM1

(c) EncM2

(d) EncM3

Fig. 2. System structure of NoEnc, EncM1, EncM2, and EncM3.

B. EncM1

EncM1 is the first model of our proposed Crypt-NoSQL
with one single proxy machine that handles the cryptography.
As shown in Figure 2(b), an extra proxy machine was estab-
lished between the client and Cassandra database comparing
to NoEnc. This proxy machine will encrypt the data sent
from client, and decrypt the data received from database, as
mentioned earlier in Figure 1. In this research, we intended
to design this proxy machine to be a dedicated server on the
cloud that always listens to any incoming client request, unlike
CryptDB which is more similar to an add-on application on
the client’s side. Extra performance cost due to connection
between client and proxy machine is expected, but we think a
dedicated proxy machine would be more realistic considering
today’s cloud computing structure.

C. EncM2

With increasing number of client threads, one single proxy
machine may become a bottleneck due to network congestion.
We design our second model, EncM2, that provides more

proxy machines to clients as shown in Figure 2(c). Each proxy
machine works in parallel with other proxy machines. It would
be interesting to see if EncM2 could improve the system
performance when more client threads are involved.

D. EncM3

Some NoSQL databases such as MongoDB were designed
with a master-slave structure that every client must connect to
a single master node first, and then this master node will dis-
tribute works to its slaves (similar to the structure of EncM2).
However, Cassandra is well-known for its ”master-master”
property that each node in a Cassandra cluster are equal. In
other words, every Cassandra node can be a coordinator to
accept client’s requests. This grants us the ability to design an
extra model, EncM3, that connects multiple proxy machines to
multiple Cassandra nodes in parallel as shown in Figure 2(d).
We would like to see if this would result in better system
performance than EncM2.

V. EXPERIMENTAL RESULTS

Performance of each Crypt-NoSQL model under different
numbers of client threads is evaluated in this section. The
testing environment consists of three physically separated
computers that belong to the same local network. Each ma-
chine plays a role of client, proxy, and database, respectively.
We installed VMware Workstation 12 on each computer so
that multiple virtual machines (VMs) could be created on each
computer for simulation. For the client computer, it contains
only one VM called ClientVM. For the proxy computer, it
could have multiple ProxyVMs created for each experiment in
this study. For the Cassandra database computer, we created
four CassandraVMs as nodes in a Cassranda cluster, which
means the size of this cluster is four. Each ClientVM and
ProxyVM was assigned with a 2-core CPU and 2GB memory,
and for each CassandraVM we assigned 1-core CPU and 4GB
memory following the hardware requirements of Cassandra
database [12]. For the software, each VM was installed with
Ubuntu 14.04 LTS 64-bit as the operating system, along with
Java SE Development Kit 8 (JDK 8) and Python 2.7.10 for
system development purposes. We include more details of each
VM as following.

ClientVM: installed with the latest YCSB 0.7.0 from [7]
that supports Cassandra 2.x versions. It will generate multiple
client threads with numbers of different requests based on
workloads to evaluate the system performance. A YCSB
workload specifies the portion of read and write operations
that will be generated. In this research, we will use Workload
A (50% reads 50% writes) and Workload B (95% reads and
5% writes).

ProxyVM: installed with our Java implementation of cryp-
tography schemes introduced in Section III. AES-128 cipher
block chaining mode (CBC) is chosen as the encryption
method in both RND and DET. We also implemented the
socket connections between ClientVM and ProxyVM so that
proxy machines can be treated as a dedicated server which
listens to the client requests all the time, as we mentioned in

Section IV. In addition, our ProxyVM will create a thread for
each connected client thread coming from ClientVM so that
all client threads can be processed in parallel.

CassandraVM: installed with Apache Cassandra version
2.1 to serve as a database server. In this study, four Cassan-
draVMs were created to form a cluster with replication factor
equals to four, and in total of 40000 data records generated
by YCSB were pre-loaded into this database. We also set
the consistency level at ClientVM to be always equal to one.
With settings of replication factor and consistency level being
fixed, we aim at controlling the performance variance caused
by database settings and focusing on the changes caused by
different structure of proxy machines.

Three types of performance measurements provided by
YCSB are evaluated: throughput, read latency, and write la-
tency. Throughput stands for the average number of operations
being accomplished by the database per second, and it’s
defined as the total number of operations divided by the total
elapsed time. Latency is the average response time of each
operation, which starts from the moment when clients sends
out the request and ends at the moment when client receives
response from database. The latency could be calculated by
YCSB for either read or write operations. A database system
with high performance is to deliver higher throughput and
lower latency.

A. Proxy Overhead

In this experiment, we would like to evaluate the per-
formance overhead caused by having a proxy machine. We
observe the overhead by comparing the performance of NoEnc
and EncM1. Each model was simulated with YCSB workload
A with the number of client threads equals to 1, 2, 4, 8, ...,
256, and 512. Having 512 client threads simulates the situation
when there are 512 clients accessing the system at the same
time. Each configuration was performed ten times and the
average value was calculated.

Figure 3 shows our experimental results regarding the
overhead of throughput, read latency, and write latency under
different numbers of client threads. When there’s only one
client, the proxy machine decreases system throughput by
45.4%, along with an increasing of read and write latency
by 85.4% and 80.5% respectively. As the number of clients
increases, the percentage of throughput overhead gradually
decreases in Figure 3(a) because the percentage of each latency
overhead also decreases in both Figure 3(b) and 3(c). Since
the proxy machine can process all clients in parallel, the proxy
becomes less dominant to the latency overhead when there are
multiple clients accessing at the same time. However, more
clients will also result in the congestion on the proxy machine,
as we can see that after the number of clients reaches 256, the
latency overhead becomes more dominant to the performance,
resulting in an increasing percentage of throughput overhead.

B. Performance of Proxy Models

As mentioned in Section IV, we are interested in the
performance of each model. In this experiment, we evaluated

(a) Throughput

(b) Read latency

(c) Write latency

Fig. 3. Performance overhead of throughput and latency when using proxy.

the throughput, read latency, and write latency, for each model
respectively. Similar to previous experiment, we test each
model with YCSB workload A and we increased the number
of threads from 1 to 512. Again, the performance of each
model was an average value of ten samples. The experimental
results are shown in Figure 4.

Figure 4(a) shows the overall throughput of different mod-
els. Without a doubt, NoEnc yields the highest throughput
of all time since it does not apply cryptography. EncM1 has
similar throughput with EncM2 and EncM3 until the number
of client threads exceeds 64, where EncM2 and EncM3 are
having better throughput than EncM1 afterwards. This means
that by having more proxy machines processing client threads
in parallel, the system throughput could be greatly increased
when the number of client threads is high. By comparing
EncM2 and EncM3 together, we notice that they almost
have identical curves regarding the overall throughput. The
reason is because each node in Cassandra has the ability to
”forward” client’s requests to other nodes when it is congested.
Therefore, no matter if you connect to one node (EncM2) or
all nodes at the same time (EncM3), Cassandra will distribute
the jobs to every node with a balance as a result of its master-
master structure. One more thing worth noting is that the
curves of throughput in EncM1, EncM2, EncM3, and even
NoEnc, become flat after 256 client threads. This indicates
a critical point that the system cannot produce a higher
throughput and it sometimes even goes lower than before,
possibly due to thread congestion and system limitations.

The average latency of read and write operations are shown
in Figure 4(b) and 4(c). As expected, NoEnc has the lowest
latency among all models. One interesting fact we observed is
that having more proxy machines working in parallel (EncM2
and EncM3) does not reduce the read latency, but it does
improve the write latency a lot as the curves are almost
identical to NoEnc. We believe the reason is because read
operations are required to send the data from database back to
client, using more bandwidth than write operations between
client and proxy since write operations only need to return
a feedback for a successful transmission. Therefore, the read
latency does not improve a lot even if more proxy machines
are used.

As a conclusion of this experiment, NoEnc has yielded
the highest throughput and the lowest latency among all
models, but it does not provide cryptography. EncM1 has the
lowest throughput and the highest latency since it only has
one proxy machine in its structure. EncM2 and EncM3 are
almost identically providing the same performance, which is
better than EncM1 because multiple proxy machines are used.
However, when client threads are less, EncM1 may be a better
choice over EncM2 and EncM3 since the costs on those extra
proxy machines may be saved.

C. Different Workloads

Previous experiments were simulated based on YCSB work-
load A, which is the combination of 50% read operations and
50% write operations. In this experiment, we would like to
test workload B, another workload provided by YCSB that
contains 95% read operations and only 5% write operations,
to see if there’s any effect on performance. Note that read
operations have higher latency than write operations in Cassan-
dra, as already being discovered by our previous experiments
and other researches [9][10]. Since workload B contains more

read operations, when the total number of operations is fixed,
we expect to see a performance drop on overall throughput
comparing to workload A. Figure 5 shows our experimental
results on the performance of different proxy models using
workload B.

As expected, the overall throughputs of all models with
workload B are lower than the ones with workload A because
read operations in Cassandra result in higher latency than write
operations, and now we are performing more read operations
within a fixed number of total operations. Note that the
relationships between each model almost remained the same
as in workload A though. One more thing worth mentioning
is when in the experiment of workload A, the critical point
of performance drop was at the case when client threads are
larger than 256. However, in this experiment of workload B,
we clearly see that the throughput dropped after the client
threads exceeded 64. This indicates that when most clients
are performing read operations at the same time, the system
may not be able to sufficiently handle more than 64 clients.
The results of latency are shown in Figure 5(b) and 5(c). As
we may expect, the read latency of all models are higher than
workload A under the same number of client threads, while
the write latency roughly remain the same as workload A.

This experiment shows us that different workloads will re-
sult in different performances since read operations are slower
in Cassandra. Choosing a suitable workload that best describes
the percentage of read and write operations in practical is re-
lying on the developers’ decisions when simulating the system
performance. However, as we can see from both Figure 4 and
5, the relationships between different proxy models remain the
same: NoEnc is always having the highest throughput and the
lowest latency, but it has no cryptography protecting the data.
EncM1 is always having the lowest throughput and highest
latency, but it only requires one proxy machine. EncM2 and
EncM3 provide a solution between NoEnc and EncM1 with
the extra costs of having more proxy machines working in
parallel.

D. Crypt-NoSQL as a Cloud Service with SLA

With the number of clients increases, the performance of
Crypt-NoSQL could be maintained by adding more proxy ma-
chines, along with extra operating costs. If considering Crypt-
NoSQL as a cloud service, a well-defined SLA on the system
performance must be established between service provider and
service user to guarantee the quality of service. How to utilize
simulation of system performance as a guidance to establish a
SLA for Crypt-NoSQL should be further discussed. First, we
define the Crypt-NoSQL SLA as following.

Crypt-NoSQL SLA: Suppose the service user has a number
of clients n ≤ N accessing the service. With the operation of
proxy machines p ∈ P , the service provider can guarantee

1) average throughput up to T (ops/sec)
2) average read latency lower than lr (µs)
3) average write latency lower than lw (µs)

, where N denotes maximum number of clients and P is a set
of proxy machines operated by service provider.

(a) Throughput (b) Read Latency (c) Write Latency

Fig. 4. Performance evaluation of different models with workload A.

(a) Throughput (b) Read Latency (c) Write Latency

Fig. 5. Performance evaluation of different models with workload B.

Given any numbers of n and p, the guaranteed values
of T , lr, and lw should be estimated properly. Performance
evaluation of Crypt-NoSQL could help the service provider
generate statistical models for throughput and latency with
different numbers of client threads and proxy machines. We
illustrate this idea a little further with a simple example.

Suppose the service provider runs simulation with n
client threads and p proxy machines, where n ≤ 128 and
p ∈

{
1,2,4

}
. Figure 6 represents the simulation results of

throughput, read latency, and write latency. The next step
is to model each performance metric with respect to n and
p. We accomplish this step by introducing the data fitting
tools in Matlab to fit all the data points into polynomial
equations. With the help of fit function and the fitType set
to ’poly23’, each performance metric could be formulated
into the following format of equation:

f(p, n) =c00 + c10p+ c01n+ c20p
2 + c11pn

+ c02n
2 + c21p

2n+ c12pn
2 + c03n

3
(1)

, where cij are coefficients derived from performance curves.
Therefore, the throughput function T (p, n), read latency func-
tion lr(p, n), and write latency function lw(p, n) could be
derived respectively. Figure 7 displays a graphical view of
throughput function T (p, n), where the data points in blue

color were fitted by a surface model. While we chose a
polynomial model for this example, other statistical models
such as exponential or linear model could also be considered.

Based on the derived functions, Table IV could be generated
with different numbers of n and p. For n = 128 clients, the
service provider can offer three levels of services (p = 1, p =
2, or p = 4) with different service fees. If service user chooses
P = 2 service, service provider guarantees the throughput will
be up to 5673.0 (ops/sec) and the latency will be no higher
than 24210.6 (µs) for read operations and 20803.9 (µs) for
write operations. Obviously, more details are still required to
establish a well-defined SLA, but we hope this example could
initiate the discussion of SLA when considering Crypt-NoSQL
as a cloud service.

TABLE IV
CRYPT-NOSQL SLA FOR n = 128.

Throughput (ops/sec) Read/Write Latency (µs)
p=1 5673.0 24210.6/20803.9
p=2 6243.1 23284.6/17616.7
p=4 6553.3 21612.6/17377.6

VI. CONCLUSION

Data encryption on most NoSQL databases is usually
enforced by user’s own implementation in applications or

(a) Read operations

(b) Write operations

Fig. 6. Latency vs. Throughput with number of clients less than 128.

Fig. 7. The equation of throughput T (p, n).

middlewares. This protects data integrity but also increases the
difficulty of executing queries over data. We were motivated
to design a system that supports query over encrypted data
on NoSQL databases. To the best of our knowledge, none
of previous research has designed such a system for NoSQL
databases. Furthermore, performance of the proposed system
with multiple clients accessing is also an important concern
in the field of big data research.

In this study, we introduced the design and analysis of the
proposed Crypt-NoSQL system that provides the functionality
of query over encrypted data with high performance. Three
different structures of Crypt-NoSQL were proposed and the
performance of each structure was evaluated with YCSB. Our
experimental results showed that with more clients accessing
the system at the same time, Crypt-NoSQL was able to deliver
a high performance by adding more proxy machines working
in parallel. A guidance to establish SLA for Crypt-NoSQL as
a cloud service was also discussed.

REFERENCES

[1] C. Mohan, “History repeats itself: sensible and nonsensql aspects of the
nosql hoopla,” in Proceedings of the 16th International Conference on
Extending Database Technology, pp. 11–16, ACM, 2013.

[2] B. G. Tudorica and C. Bucur, “A comparison between several nosql
databases with comments and notes,” in Roedunet International Confer-
ence (RoEduNet), 2011 10th, pp. 1–5, IEEE, 2011.

[3] DB-Engines, “DB-Engines Ranking.” http://db-engines.com/en/ranking,
2016. [Online].

[4] E. Brewer, “Cap twelve years later: How the” rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[5] Cloud Security Alliance, “Expanded Top Ten Big Data Security
and Privacy Challenges.” https://downloads.cloudsecurityalliance.org/
initiatives/bdwg/Expanded Top Ten Big Data Security and Privacy
Challenges.pdf, 2013. [Online].

[6] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 85–100, ACM, 2011.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, pp. 143–154, ACM, 2010.

[8] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, “Security
issues in nosql databases,” in Trust, Security and Privacy in Computing
and Communications (TrustCom), 2011 IEEE 10th International Con-
ference on, pp. 541–547, IEEE, 2011.

[9] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser,
“Performance evaluation of nosql databases: A case study,” in Proceed-
ings of the 1st Workshop on Performance Analysis of Big Data Systems,
pp. 5–10, ACM, 2015.

[10] T. Waage and L. Wiese, “Benchmarking encrypted data storage in hbase
and cassandra with ycsb,” in Foundations and Practice of Security,
pp. 311–325, Springer, 2014.

[11] Datastax, “CQL for Cassandra 2.0 and 2.1.” https://docs.datastax.com/
en/cql/3.1/cql/ddl/ddl when use index c.html, 2016. [Online].

[12] Cassandra Wiki, “Cassandra Hardware Requirements.” https://wiki.
apache.org/cassandra/CassandraHardware, 2016. [Online].

