
Privacy-Preserving PCA on Horizontally-Partitioned
Data

Mohammad Al-Rubaie∗, Pei-yuan Wu†, J. Morris Chang‡ and Sun-Yuan Kung§
∗ Iowa State University, Ames, Iowa.

Email: mti@iastate.edu
† Princeton University, Princeton, New Jersey.

Email: peiyuanwu1987@gmail.com
‡ University of South Florida, Tampa, Florida.

Email: chang5@usf.edu
§ Princeton University, Princeton, New Jersey.

Email: kung@princeton.edu

Abstract—Private data is used on daily basis by a variety
of applications where machine learning algorithms predict our
shopping patterns and movie preferences among other things.
Principal component analysis (PCA) is a widely used method
to reduce the dimensionality of data. Reducing the data di-
mension is essential for data visualization, preventing overfitting
and resisting reconstruction attacks. In this paper, we propose
methods that would enable the PCA computation to be performed
on horizontally-partitioned data among multiple data owners
without requiring them to stay online for the execution of the
protocol. To address this problem, we propose a new protocol for
computing the total scatter matrix using additive homomorphic
encryption, and performing the Eigen decomposition using Gar-
bled circuits. Our hybrid protocol does not reveal any of the data
owner’s input; thus protecting their privacy. We implemented our
protocols using Java and Obliv-C, and conducted experiments
using public datasets. We show that our protocols are efficient,
and preserve the privacy while maintaining the accuracy.

I. INTRODUCTION

Machine learning tasks include supervised learning like
regression and classification, and unsupervised learning like
clustering. These techniques are widely used in modern appli-
cations including supporting identity and access management
[1], [2], detecting email spam [3], identifying fraudulent credit
card transactions [4], or building clinical decision support
systems [5]. Very often, these applications use personal data
(e.g. biometrics, health care records, and financial datasets)
during the training (enrollment) and testing (prediction) phases
of machine learning.

Dimensionality reduction is an important machine learning
tool that was traditionally used to overcome issues like:
(a) over-fitting when the features dimensions far exceed the
number of training samples, (b) performance degradation due
to suboptimal search, and (c) higher computational cost and
power consumption resulting from high dimensionality in
the feature space. Principal Component Analysis (PCA) is a
widely used method for dimensionlity reduction. PCA aims to
project the data on the principal components with the highest
variance; thus preserving most of the information in the data

while reducing the data dimensions. From looking at fig. 1, it
can be noticed that most of the variability happens along the
black axis (denoted Principal Component 1). Hence, projecting
all the points on that new axis could reduce the dimensions
without sacrificing much of the data variability.

20 10 0 10 20

Feature 1

20

10

0

10

20
Fe

a
tu

re
 2

PC-1

PC-2

Fig. 1: Principal Component Analysis (PCA)

In this paper, we address the problem of performing PCA
by the data user wihtout compromising the privacy of the data
owners. We consider the case of collaborative learning on a
joint dataset formed of samples held by different data owners,
where each sample contains the same attributes (features).
Such data is described as horizontally-partitioned since the
data is represented as rows of similar features (columns),
and each data owner holds a different set of rows in the
joint data matrix. Many practical applications fall into this
data sharing model (e.g. detecting email spams or continuous
authentication). While PCA was performed traditionally by
gathering the data in a centralized location, it is critical to
develop systems that can enable data owners to protect their
data privacy while computing the PCA projection matrix.

Previous approaches to distributed PCA either did not con-978-1-5090-5569-2/17/$31.00 2017 IEEE

sider privacy preservation [6], [7] or required all data owners
to remain online throughout the execution of their protocols
[8]. Due to this, some approaches for privacy-preserving
continuous authentication included performing PCA on data
from one data owner and only sharing the PCA projection
matrix [9]. Such method would not utilize the data from all
data owners; hence, possibly compromising the utility of data.
In our work, we provide a solution to such issues by proposing
and implementing a practical method to perform PCA in a
privacy-preserving way. Our protocols could be utilized as a
privacy-preserving data preprocessing stage that comes before
applying other privacy-preserving machine learning algorithms
for the purpose of classification [9] or regression [10]. Thus,
ensuring privacy and utility throughout the machine learning
process on private data.

Our contributions are as follows:
First. Computing the projection matrices for PCA requires

computing the scatter matrix in a distributed way. Thus, we
developed protocols that use additive homomorphic encryption
to compute the scatter matrix. We assume the existence of a
crypto service provider (CSP) that would not collude with the
data user (similar assumption to [10], [11]). Participating data
owners are required to compute their individual shares, encrypt
them using homomorphic encryption with the CSP’s public
key, and send these shares to the data user that would aggregate
the shares. The CSP builds a garbled circuit that performs
Eigen Decomposition on the scatter matrix computed from the
aggregate shares supplied by the data user using obliviuous
transfer. While we mainly consider semi-honest parties, we
highlight the possibility of extending our approach to resist
malicious attacks. The use of our protocols for the scatter ma-
trix distributed computation is not limited to our PCA scenario
since such a matrix is necessary for multiple purposes like
financial applications [12], [13] and synthetic data generation
[13]. It is also worth noting that our distributed PCA technique
could be used whenever dimensionality reduction is needed as
part of the machine learning process as in [9].

Second. We implement our privacy-preserving protocols
using Java and Obliv-C, and perform testing using public
datasets. First, we show that our protocols are efficient. We
further demonstrate that our approach maintains correctness
and does not degrade the accuracy of ML tasks.

II. RELATED WORK

PCA Distributed Computation: There are approaches that
considered distributed PCA computation ([6], [7]), however,
unlike our paper, they did not consider privacy at all in
computing the projection matrices, and their method included
sharing private information such as the data mean with other
parties. In addition, [7] requires all parties including data
owners to remain online for the computation to be completed.
The third approach [8] had privacy of the individual shares in
mind, however, it required multiple stages of computation, and
all the data owners had to remain online during these stages,
while in our approach, the data owners do not have to remain
online after submitting their individual encrypted shares.

While not directly concerned with computing PCA in a
privacy-preserving way, Sedenka et al. [9] proposed computing
PCA based on a single data owner data, and only revealing the
PCA projection matrix to project the data. Our approach is a
solution to the privacy problem they were faced with as they
needed PCA as a preprocessing stage to improve the utility
of their single-class privacy-preserving classification method.
Our protocols enable the use of all data owners’ data without
revealing the original data to the other parties; thus preserving
the privacy while maximizing the utility.

Cryptographic Methods: Multiple secure multiparty com-
putation (MPC) techniques have been utilized to solve a
variety of problems including creating privacy-preserving ver-
sions of many machine learning algorithms. These approaches
mainly used additive homomorphic encryption [11], [14], [15],
commutative keyed hash function [16] or hybrid approaches
such as [10]. Many solutions that only rely on additive
homomorphic encryption require all data owners to remain
online during the computation stage which does not seem
practical for many applications. Some exceptions like [11]
relied on two computation parties, each with a different role,
to avoid having data owners remain online. It is notable that
Garbled Circuit solutions has two main parties: a garbler
and an evaluator. Nikolaenko et al. [10] utilized this fact to
allow performing a complex computation by using a hybrid
approach of additive homomorphic encryption and garbled
circuits, without requiring data owners to remain online. In
both approaches [10], [11], the two computation parties are
trusted not to collude as they perform different roles, and could
essentially be represented by different companies.

III. PRELIMINARIES

A. Principal Component Analysis (PCA)

PCA is an unsupervised dimensionality reduction technique
(i.e. it does not utilize data labels). Consider a dataset with
N training samples x1, · · · ,xN , where each sample has M
features (xi ∈ RM). PCA performs spectral decomposition of
the center-adjusted scatter matrix S ∈ RM×M :

S =

N∑
i=1

(xi − µ) (xi − µ)
T

= UΛUT (1)

where µ is the mean vector µ = 1
N

∑N
i=1 xi, and Λ =

diag(λ1, λ2, · · · , λM) is a diagonal matrix of eigenvalues, with
the eigenvalues arranged in a monotonically decreasing order
(i.e. λ1 ≥ λ2 ≥ · · · ≥ λM). The matrix U = [u1 u2 · · ·uM]
is an M×M unitary matrix where uj denotes the jth eigenvec-
tor of the scatter matrix. For PCA, we retain the m principle
components that correspond to the m highest eigenvalues in
order to obtain the projection matrix Um ∈ RM×m. We obtain
the reduced-dimensions feature vector by:

x̃i = UT
mxi (2)

The parameter m determines to which extent the signal
power is retained after dimensionality reduction. More pre-
cisely, while the original feature vectors have signal power

∑M
j=1 λj , the reduced-dimensions’ feature vectors have power∑m
j=1 λj . In fig. 2, m = 1 while M = 2, and the red dots

x̃i are the projections of the blue dots xi on the principal
component u1.

Fig. 2: Data Projection

B. Cryptographic Background

An important building block of our protocols is additive
homomorphic encryption. There are multiple semantically-
secure additive homomorphic encryption schemes, and without
loss of generality, Paillier [17] will be used in this work as an
example of such encryption schemes. Let function Epk[·] be an
encryption operation indexed by a public key pk, and let Dsk[·]
be a decryption operation indexed by a secret key sk. The
following rule holds for additive homomorphic encryption:

Epk[a+ b] = Epk[a]⊗ Epk[b]

where ⊗ denotes the modulo multiplication operator in the
encrypted domain. In addition, scalar multiplication can be
achieved by: Epk[a]b = Epk[a · b]. Such encryption schemes
only accept integers as plain text while machine learning data
is expected to have real values. Hence, the data (feature values)
should be discretized to obtain integer values [18].

We also utilize garbled circuits and oblivious transfer in
our protocols. The main idea is having one party (the garbler)
create an encrypted circuit that computes a function f , while
the second party (the evaluator) executes this circuit on garbled
input, and obtains the function output without learning any
intermediate value. The garbled circuit is basically a collection
of garbled gates, where each wire of this encrypted circuit
would have two random cryptographic keys associated with it
(for one and zero). The garbled input for the evaluator party
is obtained from the garbling party by using oblivious transfer
that does not allow the garbler to learn anything about the
evaluator’s input. The garbler would only provide the mapping
from garbled output keys to bits to enable the evaluator to
obtain said output.

IV. PROBLEM STATEMENT

A. Overview

We consider the case of horizontally-partitioned data across
multiple data owners, and a single data user (fig. 3). Suppose
there are L data owners. Each data owner ` holds a set of
data vectors x`i ∈ RM where M is the number of features
(dimensions), and i = 1, ..., N ` (N ` is the number of data
vectors held by data owner `). Hence, each data owner ` would
have a data matrix X` ∈ RN`×M .

The data user would like to compute the PCA projection
matrix from the data distributed across the data owners. The
projection matrix would then be used by the data owners to
reduce the dimensions of their data. Such reduced dimensions
data could later be used an input to a certain privacy-preserving
ML algorithm that performs classification, clustering or regres-
sion.

Traditionally, PCA was only used on the joint dataset in
a centralized location. Computing the projection matrix U
required the data owners to reveal all their data before applying
PCA. Hence, it is necessary to modify the computation of
the PCA projection matrix to make it distributed and privacy-
preserving. This will be presented in section V.

B. Threat Model

The main privacy requirement of our protocols is enabling
data owners to preserve the privacy of their data. We consider
the adversaries to be the computation parties: the Crypto
Service Provider (CSP) and the data user. Neither of these
parties should have access to any of the data owner’s input
data or any intermediate values. The data user should only
learn the output which is the PCA projection matrix and the
Eigen values.

The CSP’s main role is facilitating the privacy-preserving
computation of the scatter matrices (section V). The CSP is
assumed not to collude with the data user (similar to the
privacy service provider in [11] and the CSP in [10]). The data
user and the CSP can be different corporations that would not
collude, at least in the interest of maintaining their reputation
and their customer base.

We assume all participants to be honest-but-curious, i.e.,
we consider the semi-honest adversarial model. This means
that all parties would correctly follow the protocol speci-
fication, but try to use the protocol transcripts to extract
new information. Hence, both the data user and the CSP are
considered semi-honest, non-colluding but otherwise untrusted
servers. We also discuss extensions that could account for the
possibility of collusion between the data user and a subset of
the data owners in order to glean private information pertaining
to a single data owner (section V-B).

V. PRIVACY-PRESERVING PCA
In this section, we describe the privacy preserving compu-

tation of the scatter matrix S and the PCA projection matrix.
We assume that there are L data owners that are willing to
cooperate with a certain data user to compute the scatter
matrices. We also assume the existence of a crypto service

Fig. 3: System architecture and protocols

provider (CSP) who is trusted not to collude with the data
user. Figure 3 shows the overall system architecture and the
interaction between different parties.

This section covers steps 1-4 in fig. 3, while steps 5 and 6
show the usage of the PCA projection matrix by the data owner
to transform its private data to lower dimensional data. This
could be followed by using a privacy-preserving ML algorithm
on the transformed data (such as [9]). We first present our
protocols for the semi-honest model (section V-A), and follow
that by an analysis of these protocol in section V-B.

A. The Semi-honest Model

In this section, we consider the case when all parties follow
the protocol correctly, but might look at the information passed
between entities. In the following, all communication between
the data owners, the data user and the CSP is assumed to
be carried on secure channels using well-known methods like
SSL/TLS, digital certificates, and signatures. Hence, we only
concentrate on our protocols for brevity.

As mentioned in section III-B, the individual shares have to
be discretized before applying homomorphic encryption. Since
such discretization involves scaling by an integer, such as 2b−
1, the resulting scatter matrix would take larger values than
if it was directly computed from the original data. Therefore,
the data user should divide all the scatter matrix elements by
(2b − 1)2 after the protocol concludes.

We first describe the necessary equations to compute the
scatter matrix in a distributed way, and we follow that by
presenting the protocol that performs the PCA computation in
a privacy-preserving way.

The total scatter matrix can be computed in an iterative
fashion. Suppose there are L data owners, and denote P ` as
the set of training samples held by data owner `. Each data
owner ` can locally compute:

R` =
∑
i∈P `

xix
T
i , v` =

∑
i∈P `

xi and N ` =
∣∣P `∣∣ (3)

It can be shown that the total scatter matrix (eq. 1) is given
by summing the partial contributions from each party:

S =

N∑
i=1

(xi − µ) (xi − µ)
T

=

N∑
i=1

xix
T
i −NµµT

=

L∑
`=1

R` − 1

N
vvT = R− 1

N
vvT

(4)

where

R =

L∑
`=1

R` , v =

L∑
`=1

v` and N =

L∑
`=1

N ` (5)

The data owners cannot send the local shares ([R`,v`, N `]
for S) to the data user in cleartext since they include statistical
summaries of their data. Alternatively, they can encrypt the lo-
cal shares using an additive homomorphic encryption scheme
(such as Paillier’s cryptosystem [17]) where the public key is
provided by the CSP. After receiving these encrypted shares,
the data user can aggregate them to compute the encrypted
intermediate values (namely R, v and N), send them to
the CSP for decryption (after blinding the values), and use
these aggregate values to compute the scatter matrix and the
PCA projection matrix by using garbled circuits and oblivious
transfer. Blinding refers to adding random numbers to these
encrypted values to prevent the CSP from learning anything
about the data even in its aggregated form (”Blinding” the
values using an equivalent of one-time pad).

For computing S, the protocol is as follows (fig. 3):
1) Setup: The CSP sends its public key pk for Paillier’s

cryptosystem to the data owners and the data user based
on their request. This step could also include official
registration of the data owners with the CSP.

2) The data owners: Each data owner ` would compute
its own share DS` =

{
R`,v`, N `

}
using eq. 3. Af-

ter discretizing all the values to obtain integer values,
the data owners would then encrypt R`, v` and N `

using the CSP’s public key to obtain Epk[DS`] ={
Epk[R`], Epk[v`], Epk[N `]

}
. Finally, each data owner `

sends Epk[DS`] to the data user.
3) The data user: The data user receives Epk[DS`] ={
Epk[R`], Epk[v`], Epk[N `]

}
from each data owner `, and

proceeds to compute the encryption of R, v and N given
by eq. 5. More explicitly, the data user is capable of
computing Epk[R], Epk[v] and Epk[N] from the encrypted
data owner shares as follows:

Epk[R] = ⊗L`=1Epk[R`]

Epk[v] = ⊗L`=1Epk[v`]

Epk[N] = ⊗L`=1Epk[N `]

(6)

The data user adds some random integers to these aggre-
gated values to mask them from the CSP, thus obtaining
the blinded shares Epk[R′], Epk[v′] and Epk[N ′] that can
be sent to the CSP for decryption.

4) The CSP and Data User: Eigen Decomposition using
Garbled Circuits

a) The CSP would use its private key to decrypt the
blinded shares Epk[R′], Epk[v′] and Epk[N ′] received
from the data user. Without knowing the random values
added by the data user, the CSP can not learn the
aggregated values.

b) The CSP would then proceed to construct a garbled
circuit to perform Eigen Decomposition on the scatter
matrix computed from the aggregated shares. The input
to this garbled circuit is the garbled version of: (i) the
blinded aggregate shares which were decrypted by the
CSP (step 4a), and (ii) the blinding values which are
generated and held by the data user (step 3). Since
the CSP constructs the garbled circuit, it can obtain
the garbled version of its input by itself. However, the
data user needs to interact with the CSP using oblivious
transfer to obtain the garbled version of its input: the
blinding values. Using oblivious transfer guarantees
that the CSP would not learn the blinding values held
by the data user.
The garbled circuit constructed by the CSP takes
the two garbled inputs and does the following: (1)
computes the scatter matrix from the shares R′, v′

and N ′ after subtracting the data user blinding values
added in the previous steps, and (2) follows that by
performing Eigen decomposition on the scatter matrix
to obtain the PCA projection matrix.

c) The data user would receive the garbled circuit as its
evaluator. This garbled circuit already has the CSP’s
garbled input which is the decrypted and blinded
aggregate shares, and obtains the garbled version of
the blinding values using oblivious transfer.

d) Finally, the data user executes the garbled circuit and
obtains the projection matrix and Eigen values as
output.

The details of implementing the Eigen Decomposition using
garbled circuits will be deferred to section VI.

B. Analysis

We assume that all the parties participating in our protocols
are semi-honest. This includes the data owners, the data user
and the CSP. In the semi-honest adversarial model, corrupted
parties would still correctly follow the protocol specification,
however, the adversary obtains the internal state of the cor-
rupted parties including the exchanged messages, and attempts
to use this to extrapolate new information. We further assume
that the data user and the CSP do not collude, which can be
ensured by having two different organizations control each of
these two parties.

In section IV-B, we have set our privacy goal to prevent
revealing the data owners input, or any intermediate values,
to the CSP, the data user or any other data owner. It should
be noted that each of the data owner shares were encrypted
using a semantically secure homomorphic encryption. This is
Paillier’s cryptosystem [17]. We shall expand on the security
of our protocols in the following discussion by considering
the view of each party:

1) Data Owners: None of the data owners would have any
interaction with other data owners in our protocols. Each data
owner would receive the CSP’s public key, and send their
encrypted shares to the data user (step 2 in sections V-A). It is
clear that none of the data owners can learn extra information
about other data owners, or any other party.

2) Data user: The data user receives the individual shares
from each data owner (step 3 in sections V-A). However,
these shares are provided by the data owner in encrypted
form using the CSP’s public key. Hence, the data user cannot
learn the summary statistics of any individual data owner from
these encrypted shares. As the data user does not know the
CSP’s private key, the received encrypted shares would be
indistinguishable from random.

After the data user aggregates all individual shares, these
encrypted shares are sent to the CSP (after blinding them),
and the data user does not receive their decryption. The data
user only receives the Eigen Decomposition garbled circuit
with the blinded aggregate shares garbled (to act as the CSP’s
input to the garbled circuit). Hence, the data user does not learn
anything about the individual shares or their aggregates. After
executing the garbled circuit, the data user only learns the
intended protocol output which is the PCA projection matrix
and the associated Eigen values.

Finally, in order to ensure that a malicious data user does not
use a single data owner input to compute the projection matrix
in an attempt to reveal some private information about that data
owner. Certain measures from the literature could be utilized
to enable the CSP to ensure that the aggregates received were
based on input from all the intended data owners. Such method
was outlined by [10] where zero knowledge proofs could be
used by the data user to prove to the CSP that the ciphertexts
it received were the product of all data owners’ ciphertexts
(section IV.G in [10]).

3) CSP: The CSP does not receive any data from the
data owners. The CSP receives values from the data user to
decrypt (step 4 in sections V-A). These values are aggregates
and not individual shares. Moreover, the data user blinds
these aggregate values by adding random numbers to these
aggregates to mask their values from the CSP (which is
equivalent to the one-time pad). The data user also needs to
obtain the garbled version of its blinding values from the CSP,
but the CSP does not learn the blinding values as oblivious
transfer is used for this interaction. Overall, the CSP does not
learn any useful information from its interaction with the data
user.

VI. EIGEN DECOMPOSITION GARBLED CIRCUIT

A. Eigen Decomposition

Eigen Decomposition could be performed in a variety of
ways. Some methods such as the QR algorithm find all the
Eigen vectors/values at once. However, PCA is used to reduce
the dimensions; hence, not all the Eigen vectors are needed.
For this reason, we will rely on methods that only find a subset
of the Eigenvalues/vectors to avoid the extra computation
associated with finding unneeded Eigenvectors.

One of the most notable algorithms for Eigen decomposition
is the power iteration method. This method finds the dominant
Eigen value (largest value) with its associated Eigen vector. A
matrix deflation method could be used afterwards to remove
the effect of the already found dominant Eigen value while
leaving the remaining Eigen values unchanged. By repeatedly
applying the power iteration method and matrix deflation, we
can find the required number of Eigen vectors.

The power iteration method starts with a non-zero vector x0,
and attempts to reach a good approximation of the dominant
Eigenvector in a number of iterations J . In each iteration j, a
new approximation is computed as xj = Axj−1 where A is the
matrix for which we want to find the Eigen values/vectors. The
algorithm stops when the difference between xj and xj−1 is
negligible. After that, the dominant Eigenvalue can be obtained
using λ = AxJ ·xJ

xJ ·xJ
(Rayleigh quotient). It can be seen that if

J is known, this iterative computation is equivalent to xJ =
AJx0; however, computing AJ would most likely lead to an
overflow. Hence, scaling xj in each iteration is important. This
is demonstrated in algorithm 1.

As input, algorithm 1 takes the scatter matrix S, the
number of required Eigenvalues/vectors m, and the number
of iterations for the power method J . The inputs m and J are
provided by the data user. Algorithm 1 outputs the Eigenvalues
and vectors. The algorithm has two loops: the outer loop
runs m times which is the number of required Eigenvectors
(principal components), while the inner loop performs the
power method in J iterations. For each Eigenvector, the power
method is run followed by the deflation method. In line 6, the
infinity norm of the vector x is computed, and used in step 7
to scale the vector x down (to prevent overflow). The deflation
method is shown in step 10 and is preceeded by normalizing
the Eigenvector x in step 9.

Algorithm 1 Eigen Decomposition on Scatter matrix S

Input: the scatter matrix S of dimensions M x M
Input: the number of required Eigen values/vectors m
Input: the number of iterations J
Output: PCA projection matrix (Eigenvectors) U
Output: Eigenvalues Λ

1: Set x0 to be a unit vector
2: for i = 1 to m do
3: x = x0 . initialize the Eigenvector
4: for j = 1 to J do
5: x = Sx
6: λ = ||x||∞
7: x = x

λ
8: end for
9: x = x

||x||2 . Normalize vector x
10: S = S− xxTSxxT . Deflation
11: Set the ith Eigenvalue Λi = λ
12: Set the ith Eigenvector Ui = x
13: end for

As can be seen from algorithm 1, setting the number of
required principal components (PCs) m to a high number
would increase the computation time. It would be possible
for m to be set to a low number initially, and based on the
Eigenvalues obtained as output of the protocol, the data user
can choose to generate additional principal components easily.
Another garbled circuit can be created that would be similar to
the one described in algorithm 1 with the exception of having
U as an additional input. The algorithm would be modified to
include m number of deflations (line 10) using the supplied
Eigenvectors in U , then proceeds to normal execution to obtain
the additional principal components.

The initial Eigenvalues can be used to determine if enough
number of principal components were obtained either using (1)
the Kaiser method: if any Eigenvalues had values less than one,
then there is no need to generate more PCs, or (2) the scree
test: where the Eigenvalues can be plotted, and if the curve
is still steep after having m Eigenvalues, more PCs could be
generated.

B. Implementation
We implemented our garbled circuit using Obliv-C [19].

Obliv-C includes an implementation of Yao’s garbled circuit
protocol and oblivious transfer, and it further incorporates
recent optimizations. Obliv-C provides an extensible secure
computation programming tool with the ability to be integrated
with standard C code. It basically provides garbled integer and
binary data types similar to the standard C data types, and the
basic arithmetic and logic operations associated with them.

In order to implement algorithm 1, we implemented fixed-
point arithmetic functions, and a linear algebra library. We
used fixed-point arithmetic for its speed in comparison to
floating point arithmetic. We utilized 32-bits integer and used
the format Q15.16. Functions for multiplication and division
were created to work with Q15.16 fixed-point numbers.

Because of the need to normalize the Eigenvectors (step 9
in algorithm 1), we needed to compute the square root using
an iterative algorithm: yi+1 = 0.5(yi + x

yi
) where x is the

value for which the square root is desired, and yi and yi+1

are the previous and current estimations. It can be seen that
each iteration includes a division. Furthermore, to normalize
a certain vector, each of its values has to be divided by the
resulting square root. Knowing that multiplication is generally
more efficient than division, we should find the inverse square
root (instead of the square root); thus, performing multiplica-
tion by the vector rather than division. Moreover, the iterations
required to compute the inverse square root do not include
divisions: yi+1 = yi(1.5− 0.5xy2i). Hence, avoiding divisions
for all of the vector normalization steps.

In addition, we implemented a basic linear algebra library
that performs matrix multiplication and addition, dot products,
scaling or matrices and vectors, computing norms, and some
other minor operations.

VII. EXPERIMENTS

In this section, we evaluate our PCA computation protocol
in terms of efficiency and accuracy (performance of ML

TABLE I: Distributed PCA Efficiency

Dataset Features Classes Avg. Data
Owner time

Avg. Data User
Coll / Add time

CSP Decryption
time

EigenDecomposition
using Garbled Circuits

Diabetes 8 2 0.63 sec 10 ms 0.67 sec 28.3 sec (8)
Breast Cancer 10 2 0.93 sec 11 ms 1 sec 49.6 sec (8)
Australian 14 2 1.7 sec 12 ms 1.8 sec 119.1 sec (8)
German 24 2 5 sec 17 ms 5 sec 16.3 min (15)
Ionosphere 34 2 9.8 sec 24 ms 9.9 sec 43.2 min (15)
SensIT Acoustic 50 3 22.5 sec 40 ms 22.7 sec 126.7 min (15)

algorithms). We implemented our protocols using Java and
Obliv-C [19]. For homomorphic encryption using Paillier’s
cryptosystem, we used the Java library: THEP [20]. For some
of our experiments, we also utilized python and libraries like
Scikit-Learn and NumPy.

The datasets used were from the UCI machine learning
repository [21]. While our protocols work for any type of
machine learning algorithm, we chose classification as the
number of datasets available for classification, which was 255,
far outnumbered those available for clustering or regression
(around 55 each). Since the efficiency of our protocols depend
on the data dimensions (number of features), we chose datasets
with varying numbers of features: 8-50. Both the number of
features and classes for each dataset can be seen in table I.

All the experiment were performed on a commodity com-
puter with i5-6600K CPU @ 3.5GHz and 8GB of RAM. In all
experiments, we use SVM, and perform cross validation and
grid search to find the SVM parameters C and γ. The number
of data owners was set to 10 in all experiments. The initial
stage of aggregating encrypted shares was implemented using
Java, while the second stage where these encrypted shares
were utilized to compute the projection matrix (using a garbled
circuit) was implemented using Obliv-C.

A. Efficiency

Table I show the timing data for performing distributed
PCA on different datasets when using Paillier’s key length
of 1024 bits. In this table, the ”Avg. data owner time”
refers to the total time it took the data owner to compute
the individual shares and encrypt them. The ”Avg. data user
Coll/Add time” represents the time needed to collect each
individual share from each data owner, and add it to the current
sum of these shares (in the encrypted domain). We also show
the time it took the CSP to decrypt the blinded aggregated
values received from the data user. Finally, we show the
time needed to run the Eigen Decomposition using garbled
circuits in order to compute the PCA projection matrix. The
number between the brackets refers to the number of principal
components generated using the garbled circuit. Naturally, for
a given dataset, reducing this number would decrease the
computation time. As will be seen in the next section, even
15 PCs for the SensIT Acoustic dataset is enough to achieve
adequate accuracy. Finally, it can be noticed that increasing the
dimension of the data would increase the computation time for
all stages of our protocols especially the Eigen Decomposition.
However, even at 50 dimensions, the computation time was

still reasonable especially that no specialized servers were used
in our experiments

B. Accuracy

In this section, we perform experiments to test the accuracy
of classification tasks after using our protocols, and to compare
such results to those obtained using the python library Numpy.

We use the weighted F1 score as a measure for testing the
accuracy of classifiers (it is basically an F1 score that considers
the labels imbalance). The F1 score can be thought of as a
weighted average of the precision and recall scores, and a
classifier is at its best when its F1 score is 1, and worst at 0.

Figure 4 shows the results for distributed PCA. From fig.
4, it is clear that our protocols are correct, and their results
are equivalent to the ones obtained using Numpy. It should be
noted that the fluctuation in the weighted F1 score is mostly
due to the SVM parameter selection, however, it can still be
seen that the accuracy of both methods are almost the same.

VIII. CONCLUSION

We introduced an efficient privacy-preserving protocol for
computing PCA on horizontally-partitioned data (distributed
across multiple data owners). This protocol is based on
additive homomorphic encryption and garbled circuits, and
it was implemented using Java and Obliv-C. We performed
experiments which have shown that our protocol is efficient,
and that it maintains the utility for data users. In our future
work, we intend to extend our protocols to Discriminant
Component Analysis (DCA) [22]. This would require de-
signing protocols to compute the noise matrix using additive
homomorphic encryption, and computing matrix inverse using
garbled circuits. We also intend to extend our protocols to the
Kernel version of PCA.

ACKNOWLEDGMENT

This material is based on research sponsored by the DARPA
Brandeis Program under agreement number N66001-15-C-
4068.1

1The views, opinions, and/or findings contained in this article/presentation
are those of the author/presenter and should not be interpreted as representing
the official views or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of Defense.

(a) Diabetes dataset (b) Breast cancer dataset (c) Australian credit dataset

(d) German credit dataset (e) Ionosphere dataset (f) SensIT Acoustic dataset

Fig. 4: Distributed PCA Privacy and Utility

REFERENCES

[1] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information
security,” Information Forensics and Security, IEEE Transactions on,
vol. 1, no. 2, pp. 125–143, 2006.

[2] J. M. Chang, C.-C. Fang, K.-H. Ho, N. Kelly, P.-Y. Wu, Y. Ding,
C. Chu, S. Gilbert, A. E. Kamal, and S.-Y. Kung, “Capturing cognitive
fingerprints from keystroke dynamics,” IT Professional, vol. 15, no. 4,
pp. 24–28, 2013.

[3] G. V. Cormack, “Email spam filtering: A systematic review,” Founda-
tions and Trends in Information Retrieval, vol. 1, no. 4, pp. 335–455,
2007.

[4] L. Delamaire, H. Abdou, and J. Pointon, “Credit card fraud and detection
techniques: a review,” Banks and Bank systems, vol. 4, no. 2, pp. 57–68,
2009.

[5] M. A. Musen, B. Middleton, and R. A. Greenes, “Clinical decision-
support systems,” in Biomedical informatics. Springer, 2014, pp. 643–
674.

[6] Y. Qu, G. Ostrouchov, N. Samatova, and A. Geist, “Principal component
analysis for dimension reduction in massive distributed data sets,” in
Proceedings of IEEE International Conference on Data Mining (ICDM),
2002.

[7] Z.-J. Bai, R. H. Chan, and F. T. Luk, “Principal component analysis
for distributed data sets with updating,” in International Workshop on
Advanced Parallel Processing Technologies. Springer, 2005, pp. 471–
483.

[8] M. A. Pathak and B. Raj, “Efficient protocols for principal eigenvector
computation over private data.” Transactions on Data Privacy, vol. 4,
no. 3, pp. 129–146, 2011.

[9] J. Sedenka, S. Govindarajan, P. Gasti, and K. S. Balagani, “Secure
outsourced biometric authentication with performance evaluation on
smartphones,” Information Forensics and Security, IEEE Transactions
on, vol. 10, no. 2, pp. 384–396, 2015.

[10] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE, 2013, pp. 334–348.

[11] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating private
recommendations efficiently using homomorphic encryption and data
packing,” Information Forensics and Security, IEEE Transactions on,
vol. 7, no. 3, pp. 1053–1066, 2012.

[12] C. F. Lee, J. C. Lee, and A. C. Lee, Statistics for business and financial
economics. Springer, 2000, vol. 1.

[13] J.-P. Bouchaud and M. Potters, “Financial applications of random matrix
theory: a short review,” arXiv preprint arXiv:0910.1205, 2009.

[14] J. Zhan, L. Chang, and S. Matwin, “Privacy-preserving support vector
machines learning,” in Proceedings of the 2005 International Conference
on Electronic Business (ICEB05), 2005.

[15] S. Laur, H. Lipmaa, and T. Mielikäinen, “Cryptographically private
support vector machines,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2006, pp. 618–624.

[16] H. Yu, X. Jiang, and J. Vaidya, “Privacy-preserving svm using nonlinear
kernels on horizontally partitioned data,” in Proceedings of the 2006
ACM symposium on Applied computing. ACM, 2006, pp. 603–610.

[17] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in cryptologyEUROCRYPT99. Springer,
1999, pp. 223–238.

[18] S. Govindarajan, P. Gasti, and K. S. Balagani, “Secure privacy-
preserving protocols for outsourcing continuous authentication of smart-
phone users with touch data,” in Biometrics: Theory, Applications and
Systems (BTAS), 2013 IEEE Sixth International Conference on. IEEE,
2013, pp. 1–8.

[19] S. Zahur and D. Evans, “Obliv-c: A language for extensible data-
oblivious computation.” IACR Cryptology ePrint Archive, vol. 2015, p.
1153, 2015.

[20] THEP, “The homomorphic encryption project,” Java Library, 2016,
accessed 3-April-2016. [Online]. Available: https://github.com/diegode/
thep

[21] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[22] S.-Y. Kung, “Discriminant component analysis for privacy protection
and visualization of big data,” Multimedia Tools and Applications, pp.
1–36, 2015.

