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Abstract— Continuous authentication for mobile devices using
behavioral biometrics is being suggested to complement initial
authentication for securing mobile devices, and the cloud services
accessed through them. This area has been studied over the
past few years, and low error rates were achieved; however,
it was based on training and testing using support vector
machine (SVM) and other non-privacy-preserving machine learn-
ing algorithms. To stress the importance of carefully designed
privacy-preserving systems, we investigate the possibility of
reconstructing gestures raw data from users’ authentication
profiles or synthesized samples’ testing results. We propose two
types of reconstruction attacks based on whether actual user
samples are available to the adversary (as in SVM profiles) or
not. We also propose two algorithms to reconstruct raw data:
a numerical-based algorithm that is specific to one compromised
system, and a randomization-based algorithm that can work
against almost any compromised system. For our experiments,
we selected one compromised and four attacked gesture-based
continuous authentication systems from the recent literature. The
experiments, performed using a public data set, showed that the
attacks were feasible, with a median ranging from 80% to 100%
against one attacked system using all types of attacks and
algorithms, and a median ranging from 73% to 100% against all
attacked systems using the randomization-based algorithm and
the negative support vector attack. Finally, we analyze the results,
and provide recommendations for building active authentication
systems that could resist reconstruction attacks.

Index Terms— Mobile devices, continuous authentication,
gestures, privacy, reconstruction attacks, machine learning.

I. INTRODUCTION

D IGITAL media access in the United States has been
dominated by mobile devices since 2014. The time spent

on mobile apps has increased to 52% of the total U.S. digital
media time, compared to only 40% for desktop access [1].
Mobile browser usage formed the remaining 8%, adding to
the total mobile device usage. Such reliance on mobile devices
is coupled with an increase in using cloud storage services
for storing personal data to enable easy backup, and easy
access across multiple devices. However, such trends were
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not accompanied by an increase in the security of authenti-
cation to these services. This was clearly demonstrated by the
iCloud hacking incident in 2014 that exposed victims’ private
data [2], [3]. It was not done from the victims’ own mobile
devices, and was a targeted attack on user names, passwords
and security questions [2]. While two-factor authentication
is normally suggested, it would be tedious for users to use
these lengthy steps every time they need to access an online
service. Hence, continuous authentication (also called active or
implicit authentication, and used interchangeably hereinafter)
is a possible solution to this issue as it is transparent to
users while providing security based on their behavioral
biometrics.

Active authentication (AA) on mobile devices has received
significant attention over the past few years with solutions
utilizing touchscreen gestures ([4]–[7]), keystrokes ([8]), sen-
sors ([9]) or more than one input type (e.g., [10]). With the
exception of papers like [11], almost all active authentication
research on mobile devices utilized regular machine learning
methods that didn’t preserve the privacy of users. Almost all of
them used Support Vector Machines (SVM) for classification,
either as the only algorithm, or one of few. Systems that used
SVM achieved lower error rates than the few ones that used
privacy-preserving methods.

Continuing to rely on SVM, or similar algorithms, without
studying their effect on users’ privacy and security might
give a premature expectation that AA systems are ready
to be widely deployed. It is important to notice that SVM
(and k-NN) stores actual feature vector samples in user authen-
tication profiles. In each user’s profile, some of these samples
belong to the user herself: positive support vectors (PSVs).
The rest of the samples belong to other users: negative support
vectors (NSVs). Each feature vector contains information that
represents an object’s important characteristics. For gestures,
this information (features) might include average velocity and
trajectory length. Using such features to forge raw data has not
been addressed in the literature and, up till now, it was unclear
how to perform this reconstruction (as was also reported
by [12]). It is worth noting that reconstructing fingerprint
images from minutiae templates was proven to be possible
although these templates are very compact, and many did
not think it was possible at first [13]–[15]. We believe that
it is important to understand the possibility of reconstructing
raw data from users’ authentication profiles before designing
secure and privacy-preserving AA systems.

In this paper, we investigate the problem of reconstruct-
ing behavioral biometrics on mobile devices. Since gestures
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received the most attention in the recent literature ([4]–[7],
[12], [16]–[25]), it was chosen to be studied in this paper.
We foresee that cloud services would start adopting
behavioral-based AA systems for mobile devices to pre-
vent attacks like the iCloud hacking incident mentioned
earlier [2], [3]. Such services might be possible targets for
successful attacks. In fact, even large companies were targeted
by successful attacks that revealed both personal and corporate
private data [26]. If one of these cloud web services that uses
behavioral biometrics for authentication was hacked, a user
with an account on these systems might have their behavioral
biometrics-based profiles compromised. If these profiles were
not privacy-preserved, a reconstruction attack could potentially
be launched to reconstruct the raw data that could be used
afterwards to hack into that user’s accounts on other cloud
services. Furthermore, we investigate the possibility of recon-
structing raw gesture data even in the absence of user samples
in their profiles. This could be done by utilizing the output of
user samples’ testing such as the SVM decision value or the
logistic regression probability. Such type of attack can even
be launched by an adversary with no access to the AA server.

Unlike passwords or digital certificates, behavioral biomet-
rics cannot be revoked once compromised, and the users’
behavior might not change quickly enough overtime for the
compromised profiles to be obsolete [27]. Hence, we intend to
highlight the importance of using carefully designed privacy-
preserving AA systems by studying reconstruction attacks.

To the best of our knowledge, this is the first work
that proposes reconstruction attacks against gesture-based
AA systems. The contributions of this paper are as follows:

First: We propose two types of reconstructions attacks
depending on the amount of private information leaked to the
adversary. The first one (full profile attack) closely resembles
the current usage of SVM in AA systems as it assumes
that both PSVs and NSVs are stored in the clear within the
authentication profile. These are the actual feature vectors that
belong to the profile owner herself, and other users, and can
possibly be utilized to reconstruct raw data that is used to hack
into user accounts on other systems.

On the other hand, the decision value attack assumes that
none of the user samples were available for the adversary
(since he has no access to the AA server or the victim’s
own device). Alternatively, this adversary could submit a user
sample to the AA server for testing and retrieve a decision
value. To perform the decision value attack, we developed an
algorithm that starts with a generic feature vector, and random-
izes it while monitoring the change in the SVM decision value.
This allows the algorithm to finally obtain feature vectors that
can be used to reconstruct raw data using our reconstruction
algorithms. The decision value attack shares the same target
of recovering feature vectors as the model inversion attack
proposed in [28] (section II). However, their algorithm is based
on gradient descent while ours is based on randomization.

Second: We developed two reconstruction algorithms for
mobile gestures in order to assess the vulnerabilities of
AA systems in both proposed attack scenarios. Both of these
algorithms take feature vectors as input and output raw gesture
data. The first algorithm is numerical, and we use numerical

estimation and procedures on the summary statistics contained
in the feature vector to reconstruct the raw data. We further
test our reconstructed raw data against the user’s profile, and
only use the raw gesture data that passes as user’s samples.

When designing a numerical algorithm, it has to be tailored
to a single compromised system. Hence, we developed a
randomization algorithm that can reconstruct raw data from
almost any compromised system. This algorithm has the added
benefit of reconstructing raw data that can yield the closest
feature vector possible to the original feature vector. The
randomization algorithm starts with generic raw data, and
continuously randomizes it while monitoring how close the
extracted feature vector is to the original one. It stops when
no further randomization can help reduce the mean square
error (MSE) between the reconstructed feature vector and
original feature vector.

Third: We tested both algorithms and the two types of
attacks using two mobile gesture classifiers: left-to-right and
right-to-left swipes. For this purpose, we used a public data
set that was provided by Frank et al. [7]. We reviewed the
literature to select one AA system as a compromised system,
and four others to be the attacked systems against which the
reconstructed raw data would be used. Our tests revealed
the feasibility of reconstruction attacks using the proposed
algorithms. The experiments showed high attack success rates
with a median ranging from 73% to 100% against all attacked
systems using the randomization algorithm and the full-profile
attack (with negative support vectors).

Fourth: We analyze the results, and provide recommenda-
tions for future design attempts of AA systems that could
resist our proposed reconstruction attacks. Finally, we show the
effectiveness of these recommendations through experiments.

II. RELATED WORK

A. Attacks on Behavioral Biometrics

Non-zero effort attacks on behavioral biometrics did not
receive as much attention as it should have. On gesture-based
AA systems, Serwadda and Phoha [29] used a simple “lego”
robotic arm to forge gestures based on general population
statistics. Their results indicated a noticeable increase in
EER when considering their non-zero effort attack instead of
the zero-effort attacks normally considered in the literature.
However, we have a different threat model, as we target online
services protected by a gesture-based AA system, while they
targeted information stored on owners’ devices. Moreover,
they used their own feature vector while we select five from
the literature: one to be a target of our reconstruction attack,
and four others for testing. More recently, Gong et al. [12]
proposed a forgery-resistant method that works especially well
against robotic arm forgeries, by utilizing the impact of screen
settings on users’ behavior. However, it does not address our
threat model.

B. Model Inversion Attacks

Fredrikson et al. [28] proposed model inversion attacks that
used the confidence value revealed along with a classification
result to recover feature vectors that were used to build the
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model. Their case studies used the raw data as features. In their
face recognition case study, they recovered feature vectors
which were the face images themselves that were used for
training the models. Whereas in gesture-based active authen-
tication, gesture raw data cannot be used directly as feature
vectors. Therefore, we develop reconstruction algorithms to
reconstruct the raw gesture data from feature vectors. This step
was not performed in [28] since the feature vectors matched
the raw data in their case studies.

C. Reconstruction Attacks

While being in another biometrics-research area, the closest
work to ours is that related to reconstructing fingerprints
using minutiae-based templates. Minutiae-based templates are
very compact, and for a long time, it was assumed that
reconstructing the original fingerprint image from them was
not possible. That was challenged by [14] and [15], and
was later followed by other successful attempts. The closest
of these attempts to our work are likely those similar to
[13] where a minutiae-based template is used to reconstruct
another type of representation, namely phase image in [13].
This template is later used to reconstruct the fingerprint
greyscale image. Its similarity to our work stems from its
use of one type of representation to create another type of
representation. We might think of different feature vectors
as different representations of the raw gesture data. To the
best of our knowledge, ours is the first research that addresses
the issue of reconstructing the raw gesture data from feature
vectors. We add the extra challenge of using the reconstructed
raw gesture data to attack additional AA systems that utilize
different feature vectors than the compromised one.

D. Gesture-Based Active Authentication

Gesture-based AA research is presented in this subsection.
Our aim is to select a group of systems that can be utilized
for testing our hypothesis. For papers to be selected, they had
to clearly define a feature vector which is required by SVM
(and other machine learning algorithms like logistic regression,
k-NN and neural networks) since we are studying the privacy
vulnerabilities of such algorithms. Moreover, the features in
the selected systems had to be diverse to be able to study
the effect of having different features on our reconstruction
attack algorithms. After examining the recent literature, we
were able to find a group of papers that matched the previous
criteria and had other desirable characteristics: (1) they were
less susceptible to over-fitting as their feature vectors were
not too long; (2) they were flexible as they enabled testing a
single sample, as well as aggregate testing of more than one
(as opposed to some papers that only allowed aggregation of
testing samples), and (3) they did not use special equipment
or testing conditions.

We start by presenting the papers that matched our criteria
mentioned above. In [7], the authors selected features that rep-
resented location, shape, velocity, and acceleration of strokes.
Pressure and area only had one feature each. They used
SVM and k-NN for classification to obtain approximately 13%
EER for one-stroke, and 0-4% median EER when bundling

11 strokes together for testing. Li et al. [6] did a study on ges-
tures and taps. After feature selection, they chose 10 gesture
features that represented location, shape, duration, and area
of strokes. They used SVM for classification. In [4], an
evaluation of 10 classification algorithms was done. Logistic
regression and SVM were found to be the two best performing
classifiers. They used 28 features that described location,
shape, velocity, acceleration, area and pressure of strokes.
Xu et al. [10] performed a study on gestures, taps, pinches,
and handwriting on touch screens. As for gestures, they
chose 37 features representing location, shape, velocity, area
and pressure of strokes, and used SVM for classification.
In [5] the authors chose 15 features that were a subset
of the features in [7]; and used k-NN, SVM and Random
Forest for classification. The previously mentioned papers
were selected for our testing purposes since they all mentioned
their feature vectors clearly. They also matched our selection
criteria including diverse selection of features.

The papers that were not selected include [16] and [17]
which relied on graphical techniques to create a graphic touch
gesture feature (GTGF) in [16], and improved the performance
on mobile devices in [17]. It was not selected as it did not use
a regular feature vector. There was a similar case with [18] that
used HMM-based classification. Velten et al. [19] had a much
longer feature vector than the number of samples per user that
we have in the public data set from [7], so we couldn’t use it
as it would lead to overfitting. In [20], 10 minutes worth of
samples were needed for a decision, allowing intruders long
time to carry their attacks. The features from [7] were used
in both [21] and [22], so we excluded them. The features
were used in [21] to test new classification algorithms, and
in [22] to test application-centric active authentication. The
features in [12] were also the same as in [7] but were used with
different screen settings to resist forgery attacks; however, we
did not have the appropriate data set to do the testing. A similar
issue with the data set happened in [23] and [24]. In [23],
a glove was used to complement the features collected from
the touch screen, and in [24], the authors proposed analyzing
touch interactions with common user interface (UI) elements
(e.g., button, checkboxes and sliders). Finally, [25] was not
selected because of the absence of a detailed list of features.

III. PRELIMINARIES AND ATTACKS OVERVIEW

In this section, we start with a brief description of classi-
fication using SVM, since we are targeting systems that use
SVM and similar machine learning algorithms. We follow that
by describing the system model and attack scenarios. Finally,
we present our choice of the compromised and attacked
systems.

A. SVM Classification and System Evaluation

To perform classification, raw data belonging to multiple
classes (e.g., different users) need to have its features extracted
to create feature vectors. For mobile gestures, such features
may include trajectory length and average velocity. Before
using these feature vectors to train an AA profile, normaliza-
tion (or standardization) can be applied, which might include
normalizing the feature values to be between −1 and +1, for
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example. In a binary classification problem, we want to know
if the new sample x (feature vector) belongs to the user k
(positive class) or not (negative class). Thus, when training
profiles, for each user, all their training data is placed in the
positive class, and all other users’ training data is placed in
the negative class (one-versus-all classification).

Support Vector Machines (SVM) [30] is a maximal mar-
gin classifier, meaning that it tries to maximize the margin
(distance) between classes, rather than merely choosing any
separating hyperplane. After solving the SVM problem in its
dual form, the support vectors are identified. Some of these
support vectors belong to the positive class while others belong
to the negative class (formed from many other classes). Thus,
any user’s profile is in reality formed of actual user samples.
In fact, even if some user leaves the system, and her profile
is deleted, some of her samples might still be left as NSVs
in other users’ profiles. Using these support vectors, any new
sample x can be tested with the following equation:

f (x) =
∑

i:αi >0

αi yi K (xi , x) + b (1)

The sample x is then classified based on its SVM decision
value (returned by eq. 1) either through varying a threshold,
or based on the sign of the SVM decision function f (x), which
is equivalent to setting the threshold to zero.

AA systems are normally evaluated based on false accep-
tance rate (FAR) and false rejection rate (FRR). There’s a
tradeoff between FRR and FAR, and by varying the threshold
used with the decision value from eq. 1, one can obtain
different values for FAR and FRR. Some systems, or individual
users, might want to have a smoother user experience by
decreasing FRR at the expense of FAR, while others might
want more security than convenience by decreasing FAR at
the expense of FRR. In order to compare different systems
more easily, equal error rate (EER) is used, and it is the value
where FAR equals FRR. The value of EER can be determined
by varying the SVM decision value threshold.

B. System Model and Design Goals

1) System Model: We consider a system with two main
entities: a mobile device and a cloud service provider. The
cloud service provider has an authentication server and an
application server. A mobile device user wants to gain access
to the application server, while ensuring that no intruders can
obtain access to her account. Hence, the cloud service provider
is using an AA server to continuously and transparently
authenticate the user. An active authentication system consists
of the following entities (fig. 1):

a) AA server: provides a transparent way to continuously
authenticate the user based on touch gestures. Since these
systems protect cloud services, and might be accessed using
different devices, the user profiles have to be stored on the
authentication server itself. The user profiles were built using
SVM since most papers report the efficacy of their systems
based on SVM.

b) Client app: The user uses this app to gain access to the
cloud services. This app collects raw gesture data R, extract
the features from R, and sends the feature vector F to the

Fig. 1. Attack points in AA systems.

AA server to be matched against the stored profile P . The
decision value decV al is returned to the app that would allow
or prevent the app user based on that decision value.

2) Design Requirements: Extending the design goals given
in [31], we outline the following four requirements:

a) Biometric viability: A biometric modality that is used
for continuous authentication has to satisfy several require-
ments including being universal (i.e. it applies to everyone),
unique, permanent (i.e. it lasts at least through the lifetime of
the system), unobtrusive, difficult to circumvent, cost effec-
tiveness, and collectible [32]. The viability of using gestures
as a biometric was shown in many studies including [7].

b) Security and privacy requirements: The primary
requirement of an AA system is to prevent illegitimate users
from continuing to use the app. Thus, it protects the original
user’s private data in the cloud, which makes it a security
and privacy requirement at the same time. Another privacy
requirement is ensuring that none of the raw gesture data is
sent to the AA server. Thus, if the AA server is compromised,
hackers would not have access to such data [12]. Instead, only
the feature vector is sent to the AA server (fig. 1).

c) Usability requirement: Attempting to make the sys-
tem more resistant to adversaries would require tuning the
threshold to decrease FAR. However, decreasing FAR could
potentially increase the FRR which would be obtrusive to
usability. Hence, it would make sense to allow the user to
tune her threshold to allow for more usability or security.

C. Problem Setting and Threats

When password databases are compromised, the damage
can be limited to the related service. However, the permanence
property of biometrics could jeopardize user accounts on other
services, and might even prevent that user from using said
biometrics in the future.

We foresee the existence of multiple online services that
implement gesture-based AA systems. Each one of these ser-
vices would implement their own AA system with a separate
set of features. A user u can have accounts on more than one
online service (e.g., Amazon, Google and eBay). She might
also have accounts for other online services that also imple-
ment AA systems, but might have less secure infrastructure,
which are called here the compromised systems SysC .

An adversary could use information leaked from SysC to
obtain raw gesture data R, which in turn can be used to
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Fig. 2. Overview of attack procedures.

access the victim’s account on another online service provider,
e.g. eBay or iCloud. The adversary might want to access the
victim’s account to perform purchases (eBay or Amazon), or
to to gain access to their private data stored online (iCloud,
Dropbox, or Gmail). We call these the attacked systems Sys A.

As stated in Ratha et al. [33], there are eight attack points
on pattern recognition systems. We show them in fig. 1 as
they apply to a mobile-based AA system. It is worth noting
that our attack regarding Sys A are limited to type 1 (fig. 1),
i.e. injecting forged raw data to the sensor, which is possible
through replaying events directly within the mobile device
(see [34]). We do not require any vulnerabilities in Sys A for
our attacks to happen. As for SysC , we defer the discussion
to the next section.

D. Adversary Model

The goal of the adversary is to utilize the biometric perma-
nence property to gain access to a victim’s cloud stored data
on Sys A by using the victim’s leaked biometric information
from SysC .

We present two types of adversaries associated with two
types of attacks: the full-profile attack and the decision value
attack. Each one of these attacks has two stages: the first stage
is where the adversary obtains his knowledge, uses different
methods to do so for each attack. It basically comprises
(a) obtaining feature vectors, and (b) reconstructing raw ges-
ture data from these vectors (fig. 2). The second stage, which
corresponds to step (c) in fig. 2, is similar for both adversary
types. It includes injecting the raw data into the sensor while
using the attacked system app. As stated before, this is the
type 1 attack point according to [33], and does not require
the attacked system to have any vulnerabilities.

Before describing each adversary type, it should be noted
that the numerical reconstruction algorithm (section IV-A)
requires having the features metadata beforehand. This meta-
data contains the features’ names and normalization para-
meters. On the other hand, the randomization algorithm can
accept a black-box feature extraction function. Such black-box
functionality can be achieved by the app itself. The adversary,
using its account, can inject randomized raw data into the
sensor and monitor the output feature vectors sent to the cloud.
Even if the traffic is encrypted, a Man-in-the-middle HTTPS
proxy could be utilized, and such software is readily available
such as Fiddler, Charles or mitmproxy.

We characterize each of the two adversaries by describing
how their knowledge is obtained (fig. 2):

• Full-profile (FP) adversary: This could be an internal
entity with respect to the system with a legitimate system
role (e.g., system admin, an employee). It can also be an
external entity that hacked into the AA server (similar to
the Sony hack [26]). This adversary targets the privacy
of the victim by overcoming the privacy safeguard of not
uploading the raw gesture data to the AA server. If the
features’ metadata was available with the profile, or can
be obtained through decompiling the app, this would be
a passive adversary with respect to SysC; otherwise, it
would be active adversary.

• Decision value (DV) adversary: This is a weaker adver-
sary, and a relaxation from the previous one. We assume
the adversary has no access to the victims mobile device
or the AA server. The adversary operates a mobile
app, impersonates a victim, and continuously sends fea-
ture vector samples to the AA server; thus being an
active adversary, and monitors the returned decision value
(e.g., by using MITM HTTPS proxy). This adversary
targets the victims privacy by utilizing the decision
value which is used mainly used for usability reasons.
To obtain the metadata, this adversary can decompile the
app (e.g., using a website for Android apps [35]). The
adversary can also resort to using the app as a black-box
feature extraction function as mentioned earlier.

An adversary is deemed successful in their attack when
they can impersonate the victim. It is unrealistic to assume
that an adversary can obtain success rates greater than
(1 − E E R). Hence, if the success rate is equal to, or
greater than, (1 − E E R), then we call the attack “successful”.
In order to decrease the EER, many studies aggregated results
in the form of taking a majority vote of a group of gesture
strokes. Since a majority can be obtained using 3 out of
5 gesture strokes (e.g. as was done in [10]), we call an attack
“conditionally successful” if it had a success rate ranging from
0.6 to (1 − E E R).

E. Adversary Knowledge

This section corresponds to step (a) in fig. 2. We elaborate
more on how each adversary obtains the feature vectors
necessary for reconstructing the raw gesture data of the victim.
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1) Full Profile Adversary: As stated earlier, this adversary
gained access to the victim’s profile which are regular SVM
profiles as described in the system model (section III-B1).
Such profiles contain both positive (PSVs) and negative sup-
port vectors (NSVs), and any other values needed for the
SVM decision function in eq. 1.

For each user’s profile, Positive support vectors are feature
vector samples that belong to that specific user. If any of them
is used with the SVM decision function (eq. 1), the decision
value would most likely equal +1 (or smaller with soft margin
classifiers). To perform full profile attacks using PSVs, these
samples can be directly extracted from these profiles, and
used as input for our reconstruction algorithms. Other user
samples that weren’t selected to be PSVs might be more
representative of user’s behavior as they can give decision
values that exceed +1. Some of these samples might be used
as NSVs for other users’ models.

Each user’s model also contains Negative support vectors.
These are feature vector samples from other users that are used
to help set the boundary of the negative class. They would
most likely have decision values that equal −1 (or larger with
soft margin classifiers). Our method involves: (1) collecting all
the negative samples from all available profiles; (2) remov-
ing any samples that already exist as PSVs for any profile
(To isolate the effect of only using NSVs); and finally (3) test-
ing the remaining NSVs against each user’s profile using the
SVM decision function (eq. 1). The NSVs that yield decision
values greater than +1 for a particular user are selected to be
used in our attacks. We anticipate that these samples would
give better attack results than the PSVs as they are more
representative of user’s behavior, especially that their decision
values always exceed those of the PSVs for a particular
user.

2) Decision Value Adversary: To synthesize (generate) a
victim’s feature vectors, this adversary can use algorithm 1.
This adversary would basically inject randomized feature
vectors into the upstream at attack point 4 (fig. 1), and monitor
the returned decision value at attack point 8.

Algorithm 1 starts with any feature vector (all zeros or
extracted from a generic gesture by the attacker), randomizes
the features, and tests the feature vector against the user profile
to see if the current decision value is greater than the previous
best decision value. If that is the case, the algorithm updates
the feature vector to the new randomized one. This process
continues until the algorithm reaches the target decision value
Vth (set in our algorithm to be greater than +1 to obtain more
representative samples of user behavior than PSVs).

The randomization of the feature vector is done by adding
Gaussian noise to each feature independently. The additive
noise has zero mean and a standard deviation, σ , controlled
by the value s Ratio (line 7 in algorithm 1). σ is dependent on
the features standard deviation, and we set it to 1 in our case,
since that is the standard deviation of our standardized feature
vectors. s Ratio ∈ (0, 1] is a design parameter that scales the
value of σ ; thus controlling the added noise which would affect
how quickly and effectively the algorithm reaches its target.
Setting s Ratio will be discussed in section V. Furthermore, to
limit the amount of randomization as the algorithm approaches

Algorithm 1 Generate Synthetic Feature Vectors for User u
1: function genSyntheticFV(modelu , ini t F , Vth , ini t R, σ )
2: do
3: s Ratio = ini t R;
4: sFu = ini t F ;
5: decV al = test FV (modelu , sFu);
6: while decV al < Vth do
7: rnd F = sFu + norm Rand(0, s Ratio ∗ σ);
8: tmpDecV al = test FV (modelu , rnd F);
9: if tmpDecV al > decV al then

10: sFu = rnd F ;
11: decV al = tmpDecV al ;
12: s Ratio = 0.999 ∗ s Ratio;
13: recGesture = reconstruct RawData(sFu );
14: recF = extract Features(recGesture);
15: recDecV al = test FV (modelu , recF);
16: while recDecV al < Vth
17: return sFu ;

its target value, s Ratio is decreased after each successful
update since it means that the algorithm is one step closer
to reaching its target. Hence, the feature values do not need
to be changed as much as the previous steps to reach its final
target.

With this method, as many samples as needed can be cre-
ated. Therefore, additional steps were taken to ensure having
reconstructed raw data that can be useful for performing
the attack (steps 13-16 in algorithm 1). The synthesized
feature vector is passed into any of our two reconstruction
algorithms (section IV). The resulting raw data would then
have its features extracted, and tested against the user’s
profile. We only use reconstructed raw data that passes this
test.

F. Choice of Systems and Their Features

Out of the five gesture-based AA systems ([4]–[7], [10])
that we selected in section II, we chose the features from
Frank et al. [7] to represent that of the compromised system
(called hereinafter SysC). This system has achieved low error
rates which might make it a good candidate for deployment.
It was also previously chosen by other researchers when testing
new idea or machine learning algorithms [12], [21], [22].
An important reason behind our choice was that they only
had one feature each for both pressure and area (table II). This
would enable us to study the effect of using the reconstructed
raw data to attack other systems that have more reliance on
pressure and area.

The remaining four: Serwadda et al. [4], Antal et al. [5],
Li et al. [6] and Xu et al. [10] were selected to be the
attacked systems, and will be called Sys A1, Sys A2, Sys A3
and Sys A4 respectively. In table I, we show the number of
features of the attacked systems which are similar or different
to the compromised system. Table II shows all five systems
and the distribution of their features according to 8 categories.
It can be seen from tables I and II that the selected attacked
systems ([4]–[6], [10]) have varying levels of differences with
our chosen compromised system [7]. These differences would
enable us to study the effect of having different features on the
proposed attacks. For example, Sys A1 and SysC are different
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TABLE I

SIMILAR AND DIFFERENT FEATURES TO SysC [7]

TABLE II

DISTRIBUTION OF FEATURES FOR DIFFERENT SYSTEMS

Algorithm 2 Reconstruct Time Vector T
1: function reconstructTime(prctV, avgV, X, Y, length)
2: distances = get PairwiseDistances(X, Y );
3: valuesV = estimateV alues(prctV, length − 1);
4: valuesV = arrangeV eloci ties(valuesV );
5: valuesV = valuesV + (avgV − mean(valuesV ));
6: pairwiseT = distances./valuesV ;
7: T = setT ime(pairwiseT );
8: returnT ;

in more features than they share. Moreover, Sys A4 only shares
7 features with SysC , and differs in 30 features.

IV. THE RECONSTRUCTION APPROACH

Raw data of each touch gesture stroke is composed of a
series of vectors (S1, S2, . . . , SN ) with N being the number
of touch events. Each touch event produces a vector, Si ,
of the following values: location of the point (represented
by X and Y coordinates), time stamp, pressure, area, phone
and finger orientation [7]. The number of touch events (N)
varies for different gesture strokes based on multiple factors
including the length and duration of strokes and the type
of the mobile device. Out of the raw data, feature extrac-
tion has to be done to create a feature vector. Normally,
feature vectors do not contain any indication of the original
number of touch events (N) from which it was extracted.
Hence, in our algorithms, we allow passing this number
as an argument, and we denote it as length as shown in
algorithms 2-4.

The chosen compromised system [7] has 34 elements in the
feature vector. Out of these features, there are five that will not
be used in the feature vector, and they are PhoneID, UserID,
Document ID, direction flag, and direction of end-to-end line.
The direction flag is used in our case as a classifier as we
distinguish between left-to-right and right-to-left strokes; as
opposed to [7] that treated both as a single classifier called
horizontal strokes. The remaining 29 features from [7] are
listed below (along with their abbreviated names that will be
used in the algorithms below):

Algorithm 3 Reconstruct X and Y Vectors Randomly
1: function reconstructRandXY(F , star t P, end P, L D, length,

i ter Limit , ind Feat XY , s Ratio)
2: [X, Y, score] = ini tali zeXY (F, length, ind Feat XY );
3: theta = get Angle( f irst P, last P);
4: for i = 1 → i ter Limit do
5: [tmpX, tmpY ] = rotateShi f t XY (X, Y,−theta);
6: for j = 2 → length − 1 do
7: σ = ∣∣tmpY j

∣∣ ;
8: tmpY j = tmpY j + norm Rand(0, s Ratio ∗ σ);
9: [tmpX, tmpY ] = rotateShi f t XY (tmpX, tmpY, theta);

10: tmpScore= test RawData(tmpX, tmpY, F, ind Feat XY );
11: if tmpScore < score then
12: score = tmpScore;
13: Y = tmpY ;
14: s Ratio = 0.999 ∗ s Ratio;
15: return [X, Y ];

Algorithm 4 Randomize Time Vector T
1: function randomizeTime(tmpT , length, s Ratio, bu f T )
2: for j = 2 → length − 1 do
3: σ = min(tmpTj+1 − tmpTj , tmpTj − tmpTj−1);
4: rndT = tmpTj + norm Rand(0, s Ratio ∗ σ);
5: tmpTj = conditionalU pdate(tmpTj , rndT, bu f T );

6: return tmpT ;

• Location and Shape: Start X and Start Y (star t P),
End X and End Y (end P), Direct End-to-End Distance,
Mean Resultant Length, largest deviation from straight
line (L D), 20%, 50% and 80% percentiles of deviation
from end-to-end line (prct D), average direction, length
of trajectory, and ratio of end-to-end distance.

• Velocity and Acceleration: 20%, 50% and 80% per-
centiles of pairwise velocity (prctV ) and acceleration,
median velocity at last 3 points, average velocity (avgV ),
median acceleration at first 5 points.

• Pressure: Mid-stroke pressure (mid P).
• Area: Mid-stroke area covered (mid A).
• Time stamps: Stroke Duration, and inter-stroke time.
• Others: phone Orientation (seems to be fixed at 1, and

mid-stroke finger orientation and change of finger orien-
tation (both seem to be fixed at 0).

In the listing above, the features with no abbreviations
within the parentheses were not used in our numerical
approach (section IV-A). Some features were not included for
being redundant like the direct end-to-end distance that can be
calculated from other features, or the percentiles of pairwise
acceleration as we already use those of the velocity.

In the next two subsections, two approaches will be pre-
sented. The first would be based on starting with the features,
and using numerical estimation and procedures to reconstruct
the raw data (section IV-A). Whereas the second would be
based on randomizing the raw data until we get a feature
vector that is close enough to our target feature vector
(section IV-B).

In both approaches, we start with a feature vector F , the
required gesture events length, and we finally compute the
reconstructed raw data matrix recGesture. For this to happen,
the following four sub-tasks are needed: (1) Reconstruct XY :
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reconstructs X and Y coordinates based on location and shape
features (sections IV-A2 and IV-B1), (2) ReconstructT ime:
reconstructs time based on time, velocity and acceleration
features (sections IV-A3 and IV-B2), (3) Reconstruct P A:
reconstructs pressure and area based on pressure and area
features (section IV-A4), and (4) Reconstruct Others: recon-
structs other raw data like finger and phone orientation
(section IV-A4).

A. The Numerical Approach

With this approach, we use the summary statistics contained
in the feature vector to estimate the original raw data. This
estimation is done using procedures which aim to generate raw
data that has the same characteristics as the original, so that
this reconstructed raw data could produce a feature vector that
would resemble the user’s behavior. This is particularly true
for reconstructing time and location vectors. Since the feature
vector does not include sufficient information for pressure and
area (with one feature only each), we rely on the general
population touch behavior to estimate the gesture’s pressure
and area data.

In the following subsections, we start by describing how
to estimate values from percentiles (section IV-A.1) which is
needed for both reconstruct XY () and reconstructT ime()
functions (sections IV-A2 and IV-A3). We finally
describe reconstructing pressure, area and other values
in section IV-A4.

1) Estimating Values From Percentiles: There are 3 sets of
percentiles (largest deviation from straight line, velocity and
acceleration) in the compromised system feature vector. These
can provide information about the values from which these
percentiles were calculated. Hence, a function is needed to
estimate all the values from 3 percentiles only. For this pur-
pose, we chose to estimate the points using shape-preserving
piece-wise hermite cubic interpolation (PCHIP). It was found
to perform better than other options like linear interpolation
especially since linear interpolation cannot extrapolate the
points outside its range. PCHIP also preserves monotonic-
ity and the shape of the data [36]. Since we are using
MATLAB, we use its implementation of this function (denoted
as estimateV alues() in our algorithms). It takes the three
percentiles and the required number of values as inputs, and
returns the estimated values.

2) Reconstructing X and Y Coordinates: We mainly uti-
lize the deviation from straight line features to reconstruct
X and Y . This is the perpendicular distance between the end-
to-end straight line and the trajectory. It can have a positive
or a negative sign based on whether it is above or below
the straight line. In fig. 3, the largest absolute deviation L D
is shown for the gesture denoted “Original Gesture”. In the
same gesture, it can be seen that all deviation values are
positive. In other gestures, they can be all negative, or a mix
of both.

Observing the red gestures in e and f of fig. 3, it can be
noticed that they have the same shape, and that one of them
is the rotated version of the other. The deviation values would
be the same for both, and they can represent the Y values for
the horizontal version, e. Hence, we start with a horizontally

Fig. 3. Reconstruct X & Y.

laid gesture that starts at the origin (0, 0). After reconstructing
all the X and Y values for it, we rotate and shift it back to
match the original gesture.

We demonstrate our algorithm using the graphical example
shown in fig. 3: (a) we only start with the features shown in the
fig. 3; (b) the function estimateV alues() (section IV-A1) is
used to estimate the deviation values from the three deviation
percentiles; (c) since the start and end points of any gesture
have zero deviation, the two smallest absolute deviations are
set to zeros. Also, any values exceeding the largest possible
deviation are set to L D; (d) the values that were originally in
ascending order have to be arranged so that the gesture would
approximately have a bell shape to resemble normal gestures;
(e) now that the deviations values are arranged appropriately,
they need to be matched to X values. These are selected
to be equidistant values from 0 to the total gesture straight
line distance from star t P to end P; (f) finally, the horizontal
gesture from (e) is rotated and shifted to match the original
gesture based on its starting and ending points (star t P and
end P) given in the feature vector.

3) Reconstructing Time Vector T: Having the pairwise dis-
tances between all points, and the pairwise velocities, makes
it possible to calculate the pairwise timestamps. Algorithm 2
starts by computing the pairwise distances from the X and Y
values previously generated. The pairwise velocities can be
estimated using estimateV alues() but the returned values
are sorted in an ascending order, and need to be organized
according to velocity rate of change characteristics before
being used to find the pairwise timestamps.

Unfortunately, features like the median acceleration at the
first 5 points does not contain helpful information about
velocities at the beginning, middle or end of the stroke.
It would mean different thing if it were extracted from a
5-points gesture as opposed to a 50-points gesture. Hence,
we rely on general population statistics (from public data
sets) in the function arrangeVeloci ties() to arrange the
estimated pairwise velocities. Thus, having the first value
become the smallest, followed by the rest of the values sorted
in descending order.
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In order to have the average velocity of the reconstructed
raw data match that of the original feature vector, we adjust
all the pairwise velocities in line 5 of algorithm 2. After
that, calculating the pairwise time is followed by setting all
the elements of the time vector T starting from zero with
increments that equal the pairwise timestamps.

4) Reconstructing Other Values: Pressure and Area were
grouped together in the function reconstruct P A() because
we use similar methods to reconstruct them (as there is only
one feature each in the compromised feature vector). These
features are mid-stroke pressure mid P and area mid A.

Since the user pressure behavior cannot be determined from
only one feature value (the mid-stroke value), we rely on
general population statistics to generate other pressure values.
The pressure values of all gesture strokes in any public data
set can be averaged, and scaled down using the minimum
and maximum possible pressure values to be between 0 and
10 to obtain the vector (avg PressV ) which represents the
average rate of change for pressure values. Having only one
value (mid P) the pressure vector P can be found using the
equation: P(i) = mid P

avg PressV (� N
2 �) ∗ avg PressV (i) where i ∈

[1, 2, ..., N] and N is the gesture length. The same procedure
is applicable for area values.

As for the other values in the raw data matrix, we
noticed that they do not change. These include phone
orientation and finger orientation. Therefore, the function
reconstruct Others() only returns vectors of the length
required that hold the values found in the feature vector F .

B. The Randomization Approach

Numerical algorithms have to be customized according to
the features available in the compromised system. Hence,
the previous algorithm was specific to one compromised
system. In this section, we present an algorithm that can
work with almost any compromised system without the need
for customizing it by the adversary according to the avail-
able features. This stems from utilizing a small subset of
features (e.g. starting and ending gesture points, or gesture
duration) that we have found to be used in almost all sys-
tems due to having high importance when doing feature
selection.

This approach aims to produce a feature vector that is as
close to the original feature vector as possible. The main idea
of the randomization approach is adding Gaussian noise to
certain values in the raw data matrix (e.g. time vector T );
extracting the feature vector from the randomized raw data;
and checking if the new randomized values have made the
feature vector closer to the original feature vector. If it
did become closer, we would update the raw data with the
randomized values and repeat the process until an upper limit
of number of iterations is reached. This upper limit is found
experimentally in section V-A, and it represents a number after
which no significant improvement might happen.

Since changing one raw data value affects most of the
extracted features, and might delay converging to the original
feature vector, we opted to handle the problem with a divide
and conquer approach. Therefore, we define three categories

of features: (1) those affected only by X and Y coordinates;
(2) those affected either only by time, or time and X and Y
coordinates; and (3) the rest that has only one feature per raw
data type like pressure and area. For the latter, we use the same
set of functions that were described in section IV-A4 because
randomization will not help with them. As for the first two
categories, we process each one in a different stage. Features
related to X and Y coordinates have to be optimized first
before moving on to the time-related features. While velocity
depends on X , Y , and timestamps, it is still possible to work
on X and Y first to optimize the location-related features.
Then one can move on to change the timestamps to optimize
the velocity-related features, while having the X and Y coor-
dinates fixed. In other compromised systems where feature
vectors have rate of change features for pressure and area, the
same approach can be used to optimize these features.

To evaluate how close two feature vectors are, we rely
on the mean square error (MSE) between them. Of course,
only the part of the feature vector related to the randomized
values is tested. MSE is used to compare the normalized
(or standardized) feature vectors to make sure that all features
have similar value ranges and thus have equal importance. For
this comparison, the function test RawData() (please refer to
algorithm 3) is used. It takes the new randomized values, the
feature vector F and the indices of the relevant feature vector
subset as inputs, and returns the MSE.

1) Reconstructing X and Y Coordinates: Since the devi-
ation from straight line defines the shape of the gesture
(section IV-A2), we apply the Gaussian noise to these values
(lines 6-9 in algorithm 3). This has to be preceded by shifting
and rotating the gesture to be horizontal, and followed by
rotating and shifting back. After that, the new randomized
gesture is tested to see if it decreases the MSE (lines 10-14
in algorithm 3), and if it does, the Y vector is updated
accordingly.

Algorithm 3 starts by initializing X and Y . X is initialized
in the same way as in section IV-A2, and it does not change
throughout the execution of this algorithm. whereas Y is
initialized to one of eight gesture shapes depending on which
one yields lower MSE (score). This step could minimize the
amount of time needed to optimize the features. The eight
gesture shapes are all scaled to the largest deviation (L D)
with two only having positive deviations, two only having
negative deviations, and four having both positive and negative
deviations. This way, we can start with the gesture pattern
closest to the original gesture.

The remaining part of the algorithm contains the random-
ization steps. Similar to algorithm 1, we use additive Gaussian
noise with mean zero, and a standard deviation σ scaled by
s Ratio which is determined experimentally. However, in this
algorithm, each point’s additive noise has its own standard
deviation, which equals that point’s deviation from the straight
line. Hence, points on the gesture edges that normally have
less deviation would have less noise applied to them; thus
maintaining its relatively less deviation compared to other
points. This helps maintain an almost realistic gesture shape
even after randomization, especially since the algorithm starts
by initializing the gesture to one of eight realistic gesture
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shapes. Preserving such realistic gesture shapes would be
desirable in case future AA systems flag unrealistic gesture
shapes as being forgeries. Finally, similar to algorithm 1,
s Ratio is reduced after each successful update (line 14 in
algorithm 3).

2) Reconstructing Time Vector T: The algorithm starts by
initializing the time vector T in a similar way to initializing Y
in the previous section. Based on the total gesture duration,
from the feature vector F , we set five variations of the time
vector T that produce five different velocity curves, and then
select the one that produces the least MSE. After that, this
algorithm is similar to algorithm 3 described in the previous
section except for the randomization part. Hence, algorithm 4
only describes the randomization of the time vector T .

In algorithm 4, all points, except for the first and last
(that are previously set to zero and the gesture duration
respectively), are randomized successively. To ensure that the
new randomized values (rndT ) for point j won’t fall before
the preceding timestamp (tmpTj−1) or after the following
timestamp (tmpTj+1), and that enough room is left for ran-
domization in subsequent iterations, we do not set the newly
generated random timestamp unless its difference from the
preceding or the following timestamps exceeds a required time
buffer (bu f T = 0.1 ∗ (duration/ length)).

To limit the chance of having any new randomized value
very close to either the preceding or the following timestamps,
we generate the additive noise for every point using a different
standard deviation value σ scaled by s Ratio (similar to
algorithm 3). σ is set to be the smallest difference between the
current timestamp and the preceding or following timestamps.
By having this value, we limit the possibility of generating
additive noise that would result in a value rndT so close to the
preceding or following timestamps. Thus, we ensure successful
updates of the randomized time vector and possibly achieve
better use of each randomization iteration.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup and Remarks

We used MATLAB and LIBSVM to conduct the exper-
iments. LIBSVM was chosen because it is more efficient
than the MATLAB SVM functions. We used SVM with RBF
kernel, and we tuned the parameters C and γ using five-
fold cross validation. For prediction, we did not use the sign
function where the threshold would be 0 to determine different
classes. We change the threshold to find the equal error rate
(EER) which is the value where both FAR and FRR are equal.
This threshold is used throughout the experiments.

For full profile attacks, PSVs and NSVs are used to attack
one of the four attacked systems. For each user’s sample used
(whether it was PSV or NSV), that sample is excluded from the
data set before training user’s models for the attacked systems.
This is to avoid having biased results if that sample contributes
to building the user model on the attacked system.

Because the reconstruction attacks given in the related work
are in a different biometric research area (namely fingerprints),
they are not directly comparable to our attacks and algo-
rithms. Hence, our experiments only compare the attacks and

TABLE III

EERs OF DIFFERENT ATTACKED SYSTEMS

algorithms we proposed, because our work is the first to
address reconstruction attacks for mobile gestures.

1) Classifiers Selection: We used the data set provided by
Frank et al. [7] in our experiments. To test the attacks and our
algorithms, we chose two classifiers: left-to-right (LTR) swipe,
and right-to-left (RTL) swipe. We do not consider them to be
one horizontal classifier since we believe that they each have
distinct characteristics, and thus we classify them separately as
was done in [4]. In the public data set we have, and for many
users, one of the two vertical classifiers did not have enough
samples to train an SVM classifier without overfitting. For this
reason, and the fact that our algorithms are not dependent on
gestures’ directional angles (RTL and LTR are 180° apart, and
our algorithms work successfully on both of them), the results
are limited to LTR and RTL swipes. Finally, in table III, we
report the EER values of the four attacked systems when using
RTL or LTR classifiers.

2) Parameter Selection: We use data from a single user,
chosen randomly, to perform parameter selection since the
attacker will not have access to the original data of many users.

The parameter length (number of reconstructed points)
is used in all our reconstruction algorithms in section IV.
We needed to find the smallest number of events that
would preserve the characteristics of gestures. When testing
length = k, (1) we took a gesture from the data set (say of
length = 25); (2) we interpolated this gesture to only have a
length of k; then (3) interpolated the resulting reduced gesture
to find the original 25 points; and (4) we finally measure
the MSE between the original gesture, and the interpolated
one. We did the previous steps for a number of gestures and
aggregated the error. As shown in fig. 4a, the error could not
be decreased after k = 11, thus we chose length to equal that
number.

Figure 4b shows the effect of choosing different values
of s Ratio on the performance of the decision value attack
algorithm (algorithm 1). In this case, we chose the target SVM
decision value, Vth , to be 3 in order to show that we can obtain
samples with much higher SVM decision values than PSVs.
It can be noticed that setting s Ratio to be 1 would ensure the
least number of iterations for this algorithm 1 (about 20).

For the randomized time reconstruction algorithm
(algorithm 4), we also show the effect of using different
s Ratio values on the performance of this algorithm (fig. 4c).
We selected s Ratio to be 0.1 since it required the least
number of iterations to reach the almost plateau stage of MSE.
Since the plot is based on average MSE values, it is not
possible to determine the plateau stage MSE value for each
reconstructed gesture. Hence, we selected an upper limit of
iterations as the stopping condition for this algorithm (which
was 300 as can be seen from fig. 4c). As for the randomized



2658 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 12, DECEMBER 2016

Fig. 4. Parameter Selection. (a) length parameter. (b) sRatio for Dec. Value Attack. (c) sRatio for time randomization.

coordinates reconstruction algorithm (algorithm 3), the plots
were very similar, so we also selected s Ratio to be 0.1, and
i ter Limi t to be 300.

3) Negative Support Vectors’ Results: It is worth noting that
NSVs were not found for all users in the latter attack; however,
they were only three users for RTL swipes and two for LTR
swipes (out of 41 users). The results in the following section
are reported excluding these users since we wanted to test
how the algorithms would perform using NSVs regardless of
the percentage of users that didn’t have corresponding NSVs,
which might vary from one compromised system to another.

4) Attack Evaluation Metrics and Results Representation:
To evaluate the attacks, we use the successfully reconstructed
samples from the compromised system to attack four other
systems. The choice of these systems was explained in
section III-F. For user u with Nu

c reconstructed samples from
system SysC , if Nu

ai samples were successful at attacking sys-
tem Sys Ai , then the success rate would be equal to Nu

ai/Nu
c .

Hence, the success rate value is always between 0 and 1.
For the randomization algorithms, we ran each test ten times,
and reported the average. To show the results of the different
attacks with our algorithms, box plots of these success rates
are used (figures 5 and 6). The box plots show the median
success rate (center red line) and the 25th and 75th percentiles
which are the edges of the box. The whiskers extend to the
most extreme data points that are not considered outliers. The
default MATLAB whisker spans 1.5 times the inter-percentile
distances. Outlying values are represented by red plus signs.

B. Results and Analysis

Gesture stroke profiles (and our synthetic sample generation
algorithm) provide a pool of feature vectors that can be
used with the reconstruction algorithms. If the attempts to
reconstruct any of these samples were successful, then an
attack could be launched against the compromised system
successfully. In our experiments, the reconstructed raw data is
first tested against the compromised system, and it is only used
for attacks if it succeeds at impersonating the legitimate user.
Because both of our algorithms were successful at reconstruct-
ing a subset of gestures’ raw data that would always pass the
compromised system tests, results for success against the same
system are not shown.

1) Results Overview: Figures 5 and 6 show attack results
for LTR and RTL classifiers, respectively. Each of these
figures contains six sub-figures that represent the combination
of three types of attacks (positive SVs, negative SVs and
decision value attacks) and two algorithms (numerical and
randomization algorithms). Each sub-figure includes four box
plots representing the four attacked systems: Sys A1− Sys A4.

2) Impact of EER on Attack Success: In all types of
attacks, it was clear that both our algorithms performed better
against Sys A1 compared to the other three. This was not
initially expected as we thought that our algorithms would
perform best against Sys A2, since it uses a subset of the
compromised system features. From observing the EER of
both systems (table III), we noted that Sys A1’s EER was lower
than Sys A2’s EER by 3% to 6% for both classifiers. Higher
EER indicates higher FRR which means that more legitimate
user’s samples would be falsely rejected by the authentication
system. This might lead to more reconstructed raw data being
rejected by the system with the higher ERR, and it is possibly
the reason behind having a lower attack success rate against
Sys A2 compared to Sys A1. Moreover, the EER for Sys A1
was also lower than both Sys A3 and Sys A4, and the attack
success rate was better against Sys A1. This coincides with the
previous observation regarding Sys A1 and Sys A2. That being
said, EER is probably not the only reason why our attacks did
not perform so well against Sys A3 and Sys A4.

3) Impact of Features’ Differences on Attack Success: In
the following discussion, we analyze how the attack suc-
cess rates are affected by the proportion of similar features
and the relation of features in compromised and attacked
systems.

It can be seen from figures 5 and 6 that attacks against
Sys A3 [6] did not reach “conditional success” in 7 out of
the 12 attack combinations. In comparison, attacks against
other systems were all at least conditionally successful except
for one case each for Sys A2 and Sys A4 (figs. 6c and 6a
respectively). From tables I and II, it can be noticed that SysC
(the compromised system) only has one feature each for both
pressure and area. Examining the 10 features used by Sys A3,
it can be noted that at least four of them cannot be deduced
from SysC features. These are the three area features and
the average moving curvature. Such difference in the features,
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Fig. 5. Results for left-to-right swipe classifier (LTR). (a) Numerical Alg. - Positive SVs Attack. (b) Numerical Alg. - Negative SVs Attack. (c) Numerical
Alg. - Decision Value Attack. (d) Randomized Alg. - Positive SVs Attack. (e) Randomized Alg. - Negative SVs Attack. (f) Randomized Alg. - Decision Value
Attack.

Fig. 6. Results for right-to-left swipe classifier (RTL). (a) Numerical Alg. - Positive SVs Attack. (b) Numerical Alg. - Negative SVs Attack. (c) Numerical
Alg. - Decision Value Attack. (d) Randomized Alg. - Positive SVs Attack. (e) Randomized Alg. - Negative SVs Attack. (f) Randomized Alg. - Decision Value
Attack.

combined with Sys A3 having the lowest EER, could have
caused these low attack success rates. Intuitively, the relation
between the features in the compromised and attacked systems
would have an effect on the attack success rates.

Examining Sys A1, which has less than 40% of its fea-
tures similar to SysC (as opposed to 50% for Sys A3), it
can be noted that there were 3 “successful” attacks against
Sys A1. The remaining 9 attacks were all on the high end
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TABLE IV

PAIRWISE COMPARISONS OF ATTACKS AND ALGORITHMS USING PAIRED
t-TEST. THE ALTERNATIVE HYPOTHESIS WAS THAT THE FIRST OF THE

COMPARED PAIR HAS GREATER MEAN THAN THE SECOND. IN ALL

COMPARISONS, THE DIFFERENCE IN MEAN WAS SIGNIFICANT

AS EVIDENT BY THE p-VALUES (MUCH
SMALLER THAN 0.05)

of “conditional success”. Hence, by comparing Sys A1 to
Sys A3, we can deduce that it is not just the proportion of
similar features that matters, but the possibility of deducing
the attacked system features from the compromised system
features. In the case of Sys A1, most of its features could
be deduced from SysC using the reconstruction algorithms.
The high success rates for Sys A1 could also be attributed to
its low EER.

On the other hand, Sys A4 [10] had 2 “successful” attacks
against it, 9 “conditionally successful” attacks, and one failed
attack. The proportion of similar features with SysC was
only 19%, and this could have caused the lower attack success
rates compared to Sys A1. While Sys A4 had features that
cannot be deduced from SysC features (e.g. the straight
LDP-to-stop length), these features had lower importance in
their respective feature vector (see [10] for features ranking).
For this reason, and the lower EER of Sys A4, the attacks
against it were more successful than against Sys A3 mentioned
previously. Finally, the results of Sys A2 were comparable to
Sys A4. However, these results are mostly tied to Sys A2’s low
EER rather than its features, since its features are a subset of
those used in SysC .

Hence, we conclude that the attack success rates decrease
if: (1) there are fewer similar (common) features between the
compromised and attacked systems, (2) the similar features
have lower importance (ranking) than differing features in
their respective feature vector, and (3) fewer of the attacked
system features can be deduced from the compromised system
features.

4) Different Attacks Performance: Table IV shows that the
NSV attack performed better than both the PSV and the
decision value attacks. Furthermore, in comparing the results
shown in figures 5 and 6, it is clear that using NSVs yielded
noticeably better attack success rates than using PSVs to the
point that the median attack success rates against Sys A1 and
Sys A2 reached 100% for both LTR and RTL swipes using the
randomization algorithm. This was expected since the NSVs
found for a user (from other users’ profiles) would normally
have a higher decision value than the PSVs in her own profile.

Finally, the results of the decision value attacks indicate
that even without actual feature vector samples, it is feasible
to launch successful attacks against many systems. In fact,
the attacks achieved at least “conditional success” against
three systems out of four using both reconstruction algorithms.

TABLE V

AVERAGE RECONSTRUCTION ATTACK TIMES PER USER

The results against Sys A1 were also in the lead with medians
exceeding 88% for both algorithms and classifiers, while
the results against Sys A4 showed even better median attack
success rates than the PSVs attack results against the same
system.

5) Numerical vs. Randomization Algorithms: Considering
reconstruction algorithms, it can be seen from table IV that the
randomization approach performed better than the numerical.
While the randomization algorithm was mainly designed to
make it easier to utilize any compromised system without
having to make changes to our reconstruction algorithm, it
also had the added benefit of reconstructing raw data which
can generate a feature vector that is very close to the target
feature vector. Therefore, it can reach closer SVM decision
values to those achieved using original feature vectors. On the
other hand, the numerical algorithm does not use an iterative
approach; nor does it refine the raw data. The numerical
estimation is done by one-way functions, with no feedback on
how well they performed. Hence, it is not always guaranteed
that the reconstructed raw data would yield a sample that is
the closest possible to the original feature vector.

6) Attacks Efficiency: The experiments were performed on
a desktop computer with i5-3470 processor and 8GB of
RAM. The average times required for the attacker to perform
reconstruction attacks against one user are shown in table V
(run using single-threaded MATLAB script). The PSVs attacks
took longer than the NSVs attacks because the number of
PSVs was greater than the number of NSVs for each user on
average (38 and 11 respectively). All attacks had reasonable
efficiency except for the randomized reconstruction algorithm
with the decision value attack which took almost 8 minutes per
user to generate ten user samples. This performance could be
easily improved since the generation of these user samples can
be done in parallel. Moreover, the randomized reconstruction
algorithm can be modified to have its optimization target be
the SVM decision value, thus eliminating the need for running
two consecutive randomized algorithms. This improvement is
not our main target, and can be left for future work.

C. Discussion and Recommendations

From the analysis in the previous section, our observations
can be summarized as follows:

First: Full profile attacks can yield high attack success
rates, especially NSVs attacks. Hence, it is vital to avoid
exposing user samples when building users’ authentication
profiles either by utilizing a machine learning algorithm
that does not use them, or by using a privacy-preserving
algorithm.
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Fig. 7. Results of the binary result attack for left-to-right (LTR) and right-to-left (RTL) swipes. (a) LTR: Numerical Algorithm. (b) LTR: Randomized
Algorithm. (c) LTR: Success proportion vs. iterations for multiple majority vote settings. (d) RTL: Numerical Algorithm. (e) RTL: Randomized Algorithm.
(f) RTL: Success proportion vs. iterations for multiple majority vote settings.

Second: Even in the absence of user samples, it is feasi-
ble to synthesize user samples using decision value attacks.
This indicates that machine learning algorithms (like logis-
tic regression) that do not store user samples, but return a
probability, can also be susceptible to reconstruction attacks.
Hence, it is recommended to only return binary classifi-
cation results, and to rely on other methods to provide a
trade-off between security and usability (other than using a
threshold with the SVM decision value or logistic regression
probability).

Third: It is not necessary for the attacker to spend a long
time tailoring a reconstruction algorithm to a compromised
system since a general randomization algorithm can yield high
success rates. This shows that the AA system designer must
not rely on choosing features that seem harder to reverse using
numerical methods. It also further signifies the importance of
using privacy-preserving (PP) techniques.

Fourth: Success rates are lower when the attacked systems
share fewer features with the compromised system, especially
if these features cannot be deduced from the compromised
feature vectors. However, this should not deter the AA system
designers from using PP techniques just because they think
their feature vectors are so different from other systems, since
this includes high uncertainty and great risk.

Fifth: Systems with lower EERs can be more susceptible
to reconstruction attacks. This indicates that just because a
system has a lower EER, it does not mean it is ready for
deployment. In fact, it is more dangerous to deploy such a sys-
tem before taking preventative measures against reconstruction
attacks, than with a higher EER system.

1) Recommendations: Based on these observations, we pro-
vide our recommendations for building AA systems start-
ing with the following modifications to the system model
described in section III-B1 (Fig. 1):

a) AA server: To prevent full-profile attacks, it is imper-
ative to use privacy-preserving machine learning techniques.
This includes having “transformed” profiles and a privacy-
preserving matching algorithm (PP Matcher). Such transfor-
mation can be achieved using encryption [11] or reduced
SVM [37], and the PP Matcher would be tied to the specific
transformation performed. Unfortunately, such approaches
come at the cost of decreasing the accuracy of the system.
For example, the lowest reported EER in [11] was 18%
when using the features from [7]. Nevertheless, it is still
recommended to use such approaches, both to circumvent full-
profile attacks, and to report the realistic readiness of such
AA systems for deployment.

b) Client app and gesture aggregation: To thwart deci-
sion value attacks, the decision value of testing a sample must
not be returned. In fact, returning a binary result for each tested
sample is not recommended as well. Instead, the client app
should collect multiple gestures (represented by their raw data
{R1, · · · , RS}, where S is the number of gestures), extract their
individual feature vectors, and send them to the AA server
({F1, · · · , FS}). The PP Matcher can classify each sample Fi ,
and take a majority vote before returning a single binary result
bin Res (which equals 1 for a legitimate user, and 0 for an
intruder).

This way, no individual sample can be tested by the adver-
sary. Moreover, the possibility of finding a useful sample
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would decrease since the adversary has to come up with
more than one successful synthetic sample through random-
ization. To avoid having the adversary send the same group
of samples each time with one different sample to test that
one specifically, the AA system can maintain an adequate
history of submitted feature vectors to avoid repetition. It is
worth noting that previous research (e.g., [7], [10]) has shown
that aggregating multiple users’ test samples for authentication
proved to lower the EER of many system.

To demonstrate the effectiveness of our recommendations,
we conduct further experiments in the following section. Since
the security and privacy of privacy-preserving machine learn-
ing algorithms were discussed in their respective work [11],
we concentrate on the gesture aggregation advantages.

2) Binary and Aggregated Classification Results: We
assume a binary result adversary (BR) that is similar to the
decision value adversary described in section III-D. However,
for BR adversary, only binary results are returned whether
it was for a single sample or an aggregation of samples.
To obtain a feature vector, the BR adversary uses an algorithm
similar in concept to algorithm 1. However, since no decision
value is returned, it is reduced to random guessing in each
iteration.

Figure 7 shows the results of the binary result attack, and
by comparing its results (figures 7a, 7b, 7d and 7e) to the
decision value attack (figures 5c, 5f, 6c and 6f), we can see
that returning a binary result lowers the attack success rates. In
fact, the binary result attack mean was less than the decision
value attack mean by 0.27 (was found significant using paired
t-test with p − value = 2.2 ∗ 10−16). It is also worth noting
that none of the binary result attacks achieved “conditional
success” against any system.

We show the benefit of aggregating gestures in
figures 7c and 7f. These figures show the number of
iterations required to generate synthetic feature vectors (using
the binary result attack) that can pass as user samples.
The y-axis in figures 7c and 7f represent the proportion of
working synthetic samples to the total required samples at a
specific iteration (we required 100 synthetic samples for each
user to account for randomness). In figures 7c and 7f, we
show different majority vote schemes and how they compare
to each other (these curves do not include the iterations
required for the reconstruction algorithms to represent the
worst case scenario if the adversary had a perfect algorithm).
From figures 7c and 7f, it can be seen that aggregating more
gestures lowers the proportion of successfully synthesized
feature vectors. For example, when the majority scheme is 6
out of 10 gestures (6 / 10), an adversary can only obtain
15% of the required samples even after 1000 iterations.
In conclusion, more aggregated samples make it harder
for the adversary to obtain synthetic samples, and even
these generated ones cannot achieve attacks that are at least
“conditionally successful”.

VI. CONCLUSIONS

The aim of this work was to highlight the importance
of carefully designing AA systems. Otherwise, AA systems

would fail at fulfilling their premise of providing security and
privacy for mobile devices’ users, especially while accessing
cloud services. To show this, we proposed a numerical-based
and a randomization-based reconstruction algorithms. These
algorithms were utilized to reconstruct raw gesture data from
users’ authentication profiles (the full-profile attack), and from
the decision value returned by SVM sample testing (the
decision value attack). We further used such reconstructed raw
data for attacking users’ accounts on other AA systems. The
experimental results showed that reconstruction attacks against
gesture-based AA systems are feasible, and that the most
effective attack was using negative SVs. The most effective
reconstruction algorithm was the randomization-based one.
The results also showed that even when the adversary had
no access to the users’ samples, reconstruction attacks were
still feasible against some systems.
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